Images

Continuous phenomenon \(f(x, y) \)

Set of measurements (grid) \(\rightarrow \) storage as an array

Reconstruction (in display)

Sampling

Re-sampling (change the set of samples)

Other operations

Windowing operations (crop, treat rectangle as image)

Point Operations - 1 image vs. multiple images

- Brightness / contrast
- Levels curves
- Histogram equalization
- Color operations / color twists
 - Desaturation, color to gray (naive)

Multi-image \(g\left(f_1(x, y), f_2(x, y)\right) \)

\(\alpha \) channel (still per pixel)

\[\alpha f_1(x, y) + (1 - \alpha) f_2(x, y) \]

\(\alpha = f_1(x, y) \)

Other operations - mashing, under, atop,

Feathering, cloning,
Area Operations

\[f(x, y) = \text{function of the neighborhood around } x, y \]

Size/shape of neighborhood (often square, odd size)

What if neighborhood exceeds border? \(x \pm k, y \pm h \)

- Zero (or constant)
- Clamp (border)
- Wrap
- Mirror

Examples:

- \(\max, \min \)
- Average
- Weighted average

Note: Weights are an image (size of neighborhood)

1D version w/ signals \(\left[\frac{1}{3} \ 1 \ rac{1}{3} \right] \)

Convolution = sliding weighted average

Dealing w/ edges

- Infinite zeros \(\Rightarrow \) signal "grows"
- Border handling
What to do w/ Convolution

Blur - various (learn more later) different kernels
 effects of averaging - radial symmetry/gaussians
 window size
 kernel shape

"Unsharpen" - really doesn't unblur
 can't recover what was lost
 subtract neighborhood
 \[
 \begin{bmatrix}
 -\frac{1}{2} & 2 & \frac{1}{2}
 \end{bmatrix}
 \begin{bmatrix}
 -a & 1+2a & a
 \end{bmatrix}
 \]
 just "details" - subtract average
 \[
 \begin{bmatrix}
 -\frac{1}{2} & 1 & -\frac{1}{2}
 \end{bmatrix}
 \begin{bmatrix}
 -a & 2a & -a
 \end{bmatrix}
 \]
 unsharp mask - subtract a blurred version
 doesn't create details - just enhanced what's there.

Directional Smear / Strobe (copy) /

Fun Facts about Convolution -- requires flip
 \[f*(g*h) = (f*g)*h\] associative
 \[f*g = g*f\] commutative

Separability