Error Bars Considered Harmful
Exploring Alternate Encodings for Mean and Error

Michael Correll
Michael Gleicher
University of Wisconsin-Madison
Don’t Use Error Bars

They don’t work as advertised

Try something else instead!
Don’t Use Error Bars

They don’t work as advertised
The bar chart compares the effects of Placebo and Treatment. The Treatment group shows a significantly higher value compared to the Placebo group.
p<0.05
Error Bars:

Are ambiguous
Are asymmetric
Are “all or nothing”
Error Bars:

- Are ambiguous
- Are asymmetric
- Are “all or nothing”
InfoVis 2010-2013

Standard error
95% t confidence interval
Range
1.5 x interquartile range
Standard deviation
80% t confidence interval
Error Bars:

Are ambiguous
Are asymmetric
Are “all or nothing”
Within-the-bar bias

Within-the-bar bias
Within-the-bar bias
Error Bars:

- Are ambiguous
- Are asymmetric
- Are “all or nothing”
Don’t Use Error Bars

They don’t work as advertised

Try something else instead!
A solution?
Design Requirements

Consistent Symmetric Continuous
Design Requirements

Consistent Symmetric Continuous

? ✅ 🚫
Design Requirements

Consistent Symmetric Continuous
Bar Chart

- City A: 60 mm (Margin of Error ±10 mm)
- City B: 40 mm (Margin of Error ±10 mm)
Gradient Plot?

95% t-confidence interval
Gradient Plot

95% t-confidence interval

"95% t-confidence interval

Snow Expected (Millimeters)
Methods

3 experiments on Amazon Mechanical Turk, 240 participants

3 problem frames (election polling, weather forecasting, financial modeling)

No prerequisite of statistical knowledge

Participants gave a predictions as either binary forced choice, or on a Likert scale
One Sample Judgments

How likely (or how surprising) do you think the red potential outcome is, given the poll?
Results

Bar Chart

Gradient Plot

Violin Plot

Location of Outcome Relative to Mean

Perceived Likelihood of Outcome
“Within the bar” bias

Error bars suffer from this bias... but other encodings don’t
Two Sample Judgments

If forced to guess, which city do you predict will get more snow?
Overconfidence

Error bars make people unjustifiably confident... but other encodings don’t
Costs are low

p-value

Effect size
Don’t Use Error Bars

They don’t work as advertised

Try something else instead!
What’s next?

More encodings
More testing
Real stakes
Make your own!

http://graphics.cs.wisc.edu/Vis/ErrorBars/
Acknowledgments

This work was supported in part by NSF award IIS-1162037, NIH award R01 AI077376, and ERC Advanced Grant “Expressive.”

Thanks to Wei-Chen Chen for web generation code.

Visit: http://graphics.cs.wisc.edu/Vis/ErrorBars/ to make your own plots!
(and for data tables, stimuli, and sample experiments).
Contact: mcorrell@cs.wisc.edu
Box Plot

95% t-confidence interval

Snow Expected (Millimeters)

City A City B

Margin of Error +/- 10.0

Box Plot
Müller-Lyer Illusion

Müller-Lyer Illusion

p = .05?
p<0.01
p = .05
“p-pdf”