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ABSTRACT
In this paper, we study the effects of delays in a mimicry-control
robot teleoperation interface which involves a user moving their
arms to directly show the robot how to move and the robot fol-
lows in real time. Unlike prior work considering delays in other
teleoperation systems, we consider delays due to robot slowness
in addition to latency in the onset of movement commands. We
present a human-subjects study that shows how different amounts
and types of delays have different effects on task performance. We
compare the movements under different delays to reveal the strate-
gies that operators use to adapt to delay conditions and to explain
performance differences. Our results show that users can quickly
develop strategies to adapt to slowness delays but not onset latency
delays. We discuss the implications of our results for the future
development of methods designed to mitigate the effects of delays.

CCS CONCEPTS
• Human-centered computing → Interaction paradigms; •
Computer systems organization → Robotics.

KEYWORDS
Teleoperation, motion retargeting, latency analysis

ACM Reference Format:
Daniel Rakita, Bilge Mutlu, Michael Gleicher. 2020. Effects of Onset Latency
and Robot Speed Delays on Mimicry-Control Teleoperation. In Proceedings
of the 2020 ACM/IEEE International Conference on Human-Robot Interaction
(HRI’20), March 23–26, 2020, Cambridge, United Kingdom. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3319502.3374838

1 INTRODUCTION
Teleoperation systems offer the ability to project user manipulations
into remote, dangerous, or high-precision settings [13]. These sys-
tems have a long history of success in high-value applications. Ex-
tensive work has documented the demands of system performance
on task performance. In particular, delay between user command
and system action has been examined as a cause of performance
degradation, and many strategies have been proposed to mitigate
its effects. However, existing work has not explored the effects of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HRI ’20, March 23–26, 2020, Cambridge, United Kingdom
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6746-2/20/03. . . $15.00
https://doi.org/10.1145/3319502.3374838

�������������

��������������
�������������
������
�������������
������
�������������
������

��������������
���������
�����	������
������
���������
�����	������
������
���������
�����	������
������

�
������

������������

�����������������
��������������������


�������

	�����
����������

�����������
������������

Figure 1: In this paper, we investigate the effects of delays
in a mimicry-control robot teleoperation interface. (Top) In
one of our evaluation tasks, participants controlled the ro-
bot to trace the cursive letters “hri” with varying degrees of
onset latency and robot slowness. (Bottom)We analyzed the
robot’s end effector path as controlled by the user’s input
hand paths. Users adopted alternate motor strategies to con-
trol a robot arm considerably slower than their own arm, but
no strategy emerged to overcome significant onset latency.

different types of delays which may lead to different user coping
strategies. Further, prior work has not considered natural, arm-scale
teleoperation systems which hold potential for new applications.

In this paper, we explore the effects of delays in teleoperation by
studying an arm-scale teleoperation system with a direct mapping
interface. Such mimicry-control systems map the six-DOF move-
ment of the user’s hand to the robot’s end effector in real time. They
are an emerging class of telemanipulation that has been shown to
be successful even with novice users [16, 17, 22, 23]. Prior research
on teleoperation delays has not considered such interfaces. The

https://doi.org/10.1145/3319502.3374838
djrak
Typewriter
-- Preprint --

djrak
Rectangle



directness of these interfaces potentially places a high demand
on the system performance; the slave robot must be responsive
enough to the user’s movements so that their natural arm control
strategies still apply. Such demands may exacerbate the ill-effects
of delays. However, the natural control strategies used by operators
in such systems also offer a way to understand the effects of delay
by examining how control under delay deviates.

Our premise is that different types of delays cause users to adapt
in different ways, which in turn yields different task performance
and may suggest different mitigation strategies. We consider two
types of delays: onset latency, which is the time between when a
command is issued and when the slave robot begins to execute
the command, and robot slowness, which includes delays caused
by the robot not executing movements as quickly as the user does.
These types of delays occur, to varying degrees, in any practical
system. Prior work has explored different amounts of delay, but not
distinguished among different types of delays.

We conducted a human-subjects study that investigated how
delay affects arm-scale teleoperation systems with a natural map-
ping interface. Participants performed tasks using a teleoperation
system to which we systematically added different amounts and
types of delays. We confirmed that the well-known negative effects
of delays can be measured in task performance. More importantly,
we see differences in how users are affected by different types of
delay. These differences appear in task performance but can also
be identified in the details of their movements. By analyzing the
detailed movements, we were able to identify different strategies
used by participants to control the robot in delayed conditions. The
strategies apply to certain types of delays, explaining differences in
task performance. Our results show that while users exhibit strate-
gies to address slowness delays, they are much less able to apply
strategies that address latency delays.

The central contribution of this paper is an extensive charac-
terization of the effect of delays in a telemanipulation system. We
provide a systematic study of a specific mimicry-control system that
allows us to understand the effects of different types and amounts of
delay on task performance and user perception. We identify motor
adjustment strategies used by operators to adapt to delays that help
explain the connection between delays and task performance.

2 RELATEDWORKS
Analysis of Delays in Teleoperation—The value of teleoperation in
performance-critical applications with communication delays has
motivated a rich history of assessing effects when delays are present.
Sheridan and Ferrell [25] first studied the effects of communication
latency in a simple remote manipulation task. They showed that
latency did affect performance, but people were still able to com-
plete the task by adopting an alternate “stop-and-wait” strategy
when delays were present. Hristu et al. [9] compared the effects
of latency and bandwidth, i.e., the frequency with which informa-
tion is sent back to a master device, on a finger-scale haptic device.
They showed both sources of delay to be detrimental to task per-
formance. Held and Durlach [6] also note the tendency for people
to adapt their input strategies when objects are spatially or tempo-
rally skewed. Our work aims to extend this adaptation concept to

mimicry-control and characterize input strategy adaptations that
people exhibit in the face of onset latency or speed delays.

Significant work has attempted to characterize performance
degradation in critical applications to assess when teleoperation
may be feasible. See, for example, Lum [12] for a survey of surgi-
cal applications. Notably, Anvari et al. [1] show that people can
successfully complete robot surgery tasks with 500 milliseconds
of system delay, deviating from the common convention that ex-
ceeding 250 milliseconds of delay would degrade performance too
much to be useful. The authors also mention that control strategies
and performance significantly vary between people. Work has also
investigated time delays in underwater and space teleoperation sce-
narios, as it takes a set amount of time for the signal to physically
reach the controller a great distance away [8, 14, 24].

Other work devises methods for mitigating performance degra-
dation due to delays. For example, Lee and Spong [11] introduced
a controller to overcome fixed time interval delays. Another ap-
proach is the use of predictive displays that bridge the delay gap
by showing a predicted view of what the robot will likely do in the
near future [2, 3, 21]. We believe our work can inform the design
of future mitigation strategies by helping better understand how
and why delays lead to performance degradation.

Our work draws on this literature of characterizing effects of
delays in teleoperation, but it differs in two main ways: (1) we inves-
tigate a different interface, namely mimicry-control, as opposed to
standard interfaces such as six-DOF stylus devices or touchscreens;
(2) we manipulate different types of delays, all prior work only
manipulates communication delays. These differences allow us to
identify user strategies that explain performance degradation.

Robot Control with Human Motion—Moving robots using hu-
man motion has a long history dating back to the early turn-crank
master-follower device developed by Goertz et al. [4]. Since then,
research has explored various scenarios that involve moving robots
using human motion. For example, work in robotic surgery investi-
gates systems that use specialized input devices to map and scale
surgeons’ motions to robots to perform minimally invasive pro-
cedures (see the work by Lanfranco et al. [10] for an overview).
Pollard et al. [15] present a method to transfer human motion data
and accompanying stylistic motion qualities to a humanoid robot,
despite the discrepancy between human and robot degrees of free-
dom, joint velocity limits, and joint rotation ranges. Suleiman et al.
[26] present a robot imitation approach and show that their analyt-
ical solution to the optimization converges quickly and effectively.
Our prior work presents a non-linear optimization-based frame-
work for mapping arm motion onto a robot manipulator. The key
insight in this work is that exact mapping solutions are not feasible,
but relaxed solutions close to exact solutions are sufficient and ef-
fective for facilitating motion-retargeting-based teleoperation [17].
We extended this method to add in shared-control aspects for mo-
tor task training as well as bimanual robot manipulators [19, 20].
Our current work uses this motion retargeting framework to study
effects of delays on mimicry-control.

3 PRELIMINARIES
In this section, we define terms and concepts used throughout
our work. First, we consider a delay during teleoperation as any
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Figure 2: Comparison between (top) onset latency and (bottom) slowness delays.

temporal gap causing a misalignment between input commands
and output motions. As discussed in §1, we consider two potential
sources of delay in this work: (1) onset latency and (2) robot slowness.
Onset latency is the delay between the instant that a command is
issued and when the command begins to be executed. Slowness
is the rate at which the slave moves toward the master. At any
instant, the slave is moving toward the “current” (subject to the
latency) estimate of the master position, at a velocity bounded by
its slowness. We note that our definition of slowness delays differ
from the concept of bandwidth by Hristu et al. [9] as slowness in
our work is unrelated to the communication signal and related only
to the capabilities of the robot as dictated by its joint velocity limits.

To illustrate the differences between these delays, consider an n-
dimensional trajectory that a master device traces over time. As an
example, Figure 2 shows a two-dimensional semi-circle trajectory
traced by the “master,” i.e., the blue dot, over the time of one second.
The top row of this figure illustrates the effect of a 200 millisecond
onset delay. Here, the “follower,” i.e., the red dot, follows the same
curve with the same velocities over time, but because the initial
motion onset of the red dot was 200 milliseconds late, it remains this
amount of time behind on the trajectory throughout its traversal.

The bottom row in Figure 3 illustrates the effect of a slowness
delay. Here, both the master and follower dots start at the same
time, but the velocity of the red dot is less than the velocity of
the blue dot. At each time-step, the red dot greedily uses all of its
allotted velocity to try to catch the blue dot, but because it is slower,
it lags behind. It would be infeasible for the follower to trace the
same path as the master in the slowness case since a follower with
half the velocity would take double the time to follow the same
trajectory. Note that both the onset latency and slowness examples
illustrated in Figure 2 result in a 200 millisecond delay at the end
of the trajectory, but they result from vastly different sources.

These onset latency and slowness definitions extend to trajectory
following in any dimension. Notably, in this work we reason over
delays in seven-dimensions to assess robot manipulator joint-space
trajectories. Additionally, by mapping these high-dimensional joint-
space configurations through the robot’s forward kinematics model,
we are able to visualize and analyze onset latency and robot slow-
ness in three-dimensions by comparing the user’s hand translation
trajectories and the robot’s end-effector translation trajectories, as
seen in Figure 1. These analyses are covered in depth in §5.

4 USER STUDY
We conducted a user study to characterize the performance and user
perception effects influenced by onset latency and robot speed in a
mimicry-control interface. In this section, we provide an overview
of our implementation details, study design, tasks that participants
performed using the control interface, our measures, and the results.
Throughout the study, we also collected a motion dataset that was
used for additional analyses that are described in §5.

4.1 Implementation Details
The mimicry-control system used in our user study followed the
same implementation details specified in our prior work [17]. Par-
ticipants stood behind the robot and used an HTC Vive motion
controller to guide the six-DOF pose of the robot’s end-effector
positions and rotations in real-time using their own arm motions.
The robot’s gripper could be opened and closed using the trigger on
the controller. The participants’ standing location was kept consis-
tent for all tasks across all participants and was situated such that
participants were always outside of the reach of the robot and could
consistently see the workspace. The Vive motion controller pose
information was collected in a Unity game engine environment on
a Windows computer using the SteamVR library.

At each control update, a separate computer running Linux
Ubuntu and using ROS for all message transferring collected the
current translation, rotation, and button-interface information from
the Windows computer over a UDP socket. The translation and ro-
tation information from the motion controller was used to compute
a new robot joint configuration that exhibits an end-effector pose
that sufficiently matches the user’s current hand pose. New joint
configurations were calculated per-update using an optimization-
based inverse-kinematics solver called RelaxedIK [18]. RelaxedIK
is designed to solve for joint configurations that are both accurate,
i.e., they sufficiently follow the end-effector pose goals dictated by
the user’s hand motions, as well as maintain motion feasibility over
a sequence of solutions, i.e., the solver will avoid self-collisions,
kinematic singularities, and joint-space discontinuities. Our system
used the open-source implementation of RelaxedIK1 and solved for
new configurations at approximately 300 Hz.

We used a Rethink Robotics Sawyer in our study. The robot was
actuated at 100 Hz using the velocity controller provided in the In-
tera API. Velocities were computed per update such that the robot at

1https://github.com/uwgraphics/relaxed_ik
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its current joint configuration actuated toward the most recent joint
configuration goal provided by RelaxedIK as fast as possible within
its given velocity limits. Because our work aims to analyze how
people adapt their motion inputs based on the modulated motion
properties of the robot, we also recorded the robot’s motion over
time. We recorded the robot’s joint configurations as specified by its
encoders at controller each update, and also redundantly recorded
the robot’s end-effector position and rotation information using an
external Vive Tracker sensor. Recording the robot’s end-effector
allowed us to ensure that the robot’s joint states were accurately
time aligned with the user’s motion controller and to make pre-
cise, end-to-end latency measurements. Using this implementation,
our evaluation of delay included the total latency of the system,
including things like how long it takes to actuate the robot’s joints,
how long it takes to overcome the robot’s inertia from a stopped
position, etc. Prior works tend to only consider the communication
latency of the system, and does not consider the full stack of effects
that could cause a misalignment between inputs and outputs.

4.2 Hypothesis
Our central hypothesis was that delays would have detrimental
effects, as suggested by the existing literature. We hypothesized
that both task performance and user perceptions would decrease
as delays increase, which is strongly supported by prior studies.
We hypothesized that different types of delays would affect perfor-
mance differently, based on our experience with different systems
and our intuitions of why mimicry control is successful (e.g., dif-
ferent types of delays break the illusion of naturalness in different
ways). We also hypothesized that we would see different strategies
for adapting to delays, either in response to different amounts and
types of delays or due to individual differences in participants.

4.3 Study Design
To test our hypothesis, we designed a 7 × 1 within-participants ex-
periment in which naïve participants used seven control conditions
in a random order to complete three physical tasks. Our conditions
included a base condition where the system ran at its best perfor-
mance with no artificially added onset latency or velocity limits.
We included three conditions with different levels of added onset
latency, which we call latency1, latency2, and latency3, and three
different levels of slowness delays speed1, speed2, and speed3.

The latency conditions artificially added a delay between when
a motion is observed and when it is communicated to the robot. We
measured total system latency using a Vive tracking system by calcu-
lating the amount of time between when the controller moves and
when a corresponding movement by the robot occurs. We measured
the base condition to be approximately 90 milliseconds (the 80Hz
sampling rate of the Vive limits the fidelity of the measurement).
For the latency conditions, we added programmatic delays to cause
the total system latency to reach a target value that was verified
by measurement. We chose 250 milliseconds for latency1 based on
prior studies [e.g., 12] that report it as the level of delay where
performance starts degrading, and 500 and 750 milliseconds were
chosen for latency2 and latency3, respectively, as equally spaced
points to observe further degradation in performance.

The robot speed conditions synthetically slowed the robot down
by reducing the robot’s joint velocity limits in the velocity controller.
Joint velocity limits were uniformly reduced to be approximately
equivalent to the 250, 500, and 750 millisecond delays implemented
in the latency conditions. To calculate these joint velocity scal-
ing factors for a given delay, we drew 100 random configurations,
and computed the output end-effector translation velocity limits
at those configurations by mapping through the Moore-Penrose
pseudoinverse of the robot’s Jacobian matrix: J(θ )†k Ûv = Ûe. We then
manually adjusted the value k such that the average end-effector
translation velocities over all configurations results in the desired
delay in the robot’s physical joint velocity limits. The base condition
used the robot’s actual joint velocity limits, i.e., k = 1.

4.4 Tasks
To improve the applicability and generalizability of our findings,
we developed three tasks that cover a wide range of manipulation
scenarios. These tasks were toy cleanup, stirring, and tracing. All
tasks had a maximum time limit of one minute. In the toy cleanup
task, participants picked up two foam blocks and put them in the
toy bin. This task was included as a pick-and-place task to assess
both precise manipulation and grasping acuity.

The stirring task involved participants stirring five times clock-
wise in a bundt cake pan. The pan is approximately 0.3 meters in
diameter and has a circular inner boundary of about 0.1 meters
in diameter at the center. This task was included to observe how
fluently participants could move along a simple circular curve.

The tracing task involved participants tracing the letters “hri”
in lowercase cursive on a poster in front of the robot (as seen in
Figure 1). The robot held a small foam block pointer in its gripper
to indicate where the robot was pointing, and participants were
instructed to follow the curve as closely as possible near the wall,
while preferably avoiding collisions with the wall. The “hri” cur-
sive writing was 0.65 meters wide and 0.4 meters tall. While the
“i” was dotted on the acronym for recongnizability, participants
were instructed not to dot the “i” such that the output end-effector
curve was continuous from lower left to lower right. This task was
included to assess the participant’s fine-motor control accuracy
over the robot’s end-effector through a complex geometrical curve.

4.5 Procedure
Following informed consent, participants were provided with detail
on the study goals and tasks. Before controlling the robot, partic-
ipants were instructed on how to use the control interface. After
expressing readiness, participants were presented with a training
task of picking up a foam block from the table. This training task
was selected due to its simplicity and the preparation it offered
for the first study task. Each participant performed the training
task at least one time and had the option of performing it up to
two additional times. After the training, participants were intro-
duced to the study tasks outlined above. Participants were then
asked to perform the tasks with their hands to demonstrate their
understanding. They then performed the tasks for each control
condition on the robot in the order toys, stirring, then tracing. Con-
dition order was randomized between participants. After each task,
the experimenter reset the robot to the same initial configuration to



standardize the starting point. After completing the experimental
tasks using a particular control condition, participants filled out a
questionnaire pertaining to that condition. At the end of the study,
participants were debriefed about what we were studying, given
the opportunity to ask any additional questions, and compensated.

4.6 Participants
We collected data from 21 participants (7 male, 14 female) from
the University of Wisconsin–Madison campus with ages 19–41
(M = 24.07, SD = 6.61). Due to robot gripper malfunctions during
some study trials, data from 24 of 147 total condition trials were
lost (three or four conditions were affected for seven participants).
Due to the randomized order and our within-participants study
design, we do not expect this data loss to introduce systematic
bias. Participants reported low-to-moderate familiarity with robots
(M = 3.08, SD = 1.44, measured on a seven-point scale). Seven
participants reported participating in prior robotics research studies.
The study took 60 minutes, and each participant received $10 for
their time.

4.7 Measures and Analyses
We used several metrics to characterize performance on the three
tasks described in §4.4. In the toy cleanup task, we measured com-
pletion time and the number of times an object was knocked over
(resulting in an object reset). During stirring, we measured com-
pletion time and the number of contacts between the spatula and
either the outside or inside of the bundt pan. In the tracing task,
we measured completion time and formulated a “tracing accuracy”
metric that assessed how well participants followed the given curve.

The tracing accuracy metric, T is a sum of two sub-scores: a
Cartesian accuracy score, c , and an order accuracy score, o. The
Cartesian accuracy score projects each end-effector point onto
the tracing curve and takes the average error distance of these
projections. Because good tracing also consists of following the
curve points in order, the order accuracy score, o, penalizes end-
effector paths that jump around between various points on the path
even if they are consistently geometrically close to the curve. We
take the arc-length parameterization of the tracing curve, and, after
projecting the end-effector point at each time-step onto the curve,
associate an arc-length parameter value in [0, 1] to the sequence of
projection points. We then go through this sequence of arc-length
parameter values and iteratively sum up errors to compute o using
the following rule: if the arc-length parameter value at a given
index is greater than its predecessor and less than its successor, i.e.,
it is in order, do not add anything to o; however, if the arc-length
parameter value is less than than its predecessor or greater than than
its successor, add the absolute value of the displacement between
these arc-length parameter values to o. We normalize o and c and
sum them together to get the final tracing accuracy metric:T = o+c ,
thus meaning the range of T is [0, 2] where lower values are better.

Tomeasure participants’ perception of the different control meth-
ods, we administered a questionnaire based on prior research on
measuring user preferences [7], including scales to measure fluency,
trust, and predictability. Each scale included items measured on a
seven-point rating scale (1 = strongly disagree; 7 = strongly agree).
Fluency was measured using items “The robot and I worked fluently

together as a team,” and “The robot contributed to the fluency of the
interaction” (Cronbach’s α = 0.81). The trust scale included items
“I trusted the robot to do the right thing at the right time” and “The
robot was trustworthy” (Cronbach’s α = 0.91). Finally, predictabil-
ity was measured using items “The robot consistently moved in a
way that I expected,” “The robot’s motion was not surprising,” and
“The robot responded to my motion inputs in a predictable way”
(Cronbach’s α = 0.93). We also included a non-weighted TLX [5].

We analyzed data from all measures using one-way repeated-
measures analyses of variance (ANOVA). All pairwise comparisons
used Bonferroni Correction by multiplying the p-value generated
from Student’s t-test by six.

4.8 Results
Our results are summarized in Figure 3. The analysis provides par-
tial support for our hypothesis, as at a high level onset latency
delays were shown to significantly degrade performance and user
perceptions across all tasks and measures, while significant dif-
ferences were not observed as the robot was slowed down. For
instance, the tracing accuracy measure shows that participants got
significantly worse at tracing as more onset latency was present;
conversely, while tracing time logically slowed down as the robot
slowed down, tracing accuracy actually trended better as the robot’s
speed decreased. This same effect was observed in the stirring task
and toys task based on the significant differences in the stirring
time, number of edge hits, and toys time metrics. In fact, no par-
ticipants were able to complete the toys task in the allotted time
in the latency2 and latency3 conditions, while the robot slowness
conditions exhibited no such performance degradation.

User perception effects, such as fluency, trust, predictability, and
numerous factors of the TLX questionnaire, were shown be sig-
nificantly affected by onset latency, but even the slowest robot
condition generally trended favorably compared to the base con-
dition across all measures. In the following section, we further
investigate why these two sources of delay have vastly different
effects on user performance and perceptions.

5 DATA ANALYSIS
Our results discussed in the previous section suggest that delays
from communication latency more negatively affect performance
and user perceptions than robot slowness. Our goal throughout
this work was not only to determine whether these delays do or do
not have an effect but to analyze how these types of delays affect
performance. To this end, we conducted a data analysis procedure
to investigate the differences between these two sources of delay
at the motor strategy level. This section provides an overview of
this data analysis procedure and summarize our findings.

Prior work has demonstrated that people adjust their motor
strategies when visual feedback is either spatially or temporally
skewed [6, 25, 27]. Building on this principle, we speculated that as
people control the robot using their own motions as inputs in the
face of onset latency or robot speed delays, they would show some
adaptation in their motor input command strategy. Our goal was
to find patterns in the data collected in our user study to indicate
signs of such motor adaptation strategies when delays are present.
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Figure 3: Tukey boxplots of data from the performance and user perception measures for each control condition across tasks.
Base (B), Speed1 (S1), Speed2 (S2), Speed3 (S3), Latency1 (L1), Latency2 (L2), and Latency3 (L3). Range values signify standard
error. The grids to the right of each graph denote pairwise significance. A square is filled if the two conditions are significantly
different, with blue squares denoting p < .01 and yellow squares denoting p < .05.
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Figure 4: Candidate motor adjustment strategies used to guide our motion data analysis. The “master” (blue dot) illustrates
variousmotion strategies to get the “follower” (red dot) to follow the semi-circle trajectory, evenwith slowness or onset latency.

5.1 Candidate Motor Adjustment Strategies
To bootstrap our data analysis process, we speculated about pos-
sible motion input adaptations that could feasibly counteract the
visuomotor dissonance caused by onset latency and robot slowness
during mimicry-control. These candidate strategies were specula-
tive and not yet rooted in data, but they served as a starting point
for further investigation in the data.

Our prior experience and review of the literature identified four
distinct strategies that may be used to overcome robot slowness or
onset latency, as seen illustrated in Figure 4: (1) Speed Capituation,
that could offset the effects of robot slowness delays by slowing
down input motions to match the reduced speed of the robot; (2)
Motion Exaggeration, that could offset the effects of robot slowness
delays by displacing the time needed for the robot to keep up by
making larger, yet still fast, motion inputs; (3) Start-and-Stop, that



could offset the effects of either robot slowness or onset latency by
moving a little, waiting for the robot to catch up, then moving again.
This strategy was observed to occur in the case of onset latency by
Sheridan and Ferrell [25]; and (4) Visual Feedback Ignorance, that
could offset the effects of onset latency by simply doing an open
loop motion strategy without adjusting based on where the robot
currently is. For example, in the stirring task, a visual feedback
ignorance strategy would involve the user blindly tracing a circle
in space in front of them without regard for the robot’s actions.

5.2 Motion Analysis Framework
After proposing candidate motor adjustment strategies, we next
devised two analysis tools that could shed light on the data and
indicate whether these motor strategies occurred or how often each
strategy occurred. These analysis tools were also designed to be
general enough to uncover alternative motor adjustment strategies
that we did not anticipate, if such strategies existed.

We designed our first analysis tool, which we will refer to as the
velocity ratio test (VRT), to search for speed capitulation, motion
exaggeration, start-and-stop, or other related motor-adjustment
strategies in the data. While these strategies are disparate in many
ways, they all share a similarity in terms of exhibiting a unique
relationship between the master and follower’s translation velocities
over time. For example, in the case of mimicry-control, a speed ca-
pitulation strategy would result in the user’s hand and the robot’s
end-effector velocities being the same over time, a motion exag-
geration strategy would exhibit user hand-translation velocities
that are consistently larger than the robot’s end-effector translation
velocities, and a start-and-stop strategy would show the user’s hand
velocity consistently oscillating between being faster and slower
than the robot’s end-effector velocity.

Using this observation about the similarity amongst various can-
didate motor adjustment strategies, the translation velocity ratio
test involves four steps. In Step 1, we take the user’s hand trans-
lation trajectory, ph (t), and the robot’s end-effector translation
trajectory, pr (t) over any time frame (e.g., we used full task trials
in our user study) and map these translation trajectories to velocity
signals, vh (t) and vr (t) respectively. In our work, we approximated
velocities using finite differencing. Step 2 involves, at each time
step, taking the ratio of the user’s hand translation velocity and
the robot’s end-effector translation velocity to create an interme-
diate velocity ratio signal: r(t) = vh (t )

vr (t )
,∀t . In Step 3, we map the

Figure 5: Illustrates where on the cursive “hri” writing the
overshoot test was focused.

velocity ratio signal r(t) to a single 3-dimensional point, such that
the x-component is the ratio of how many points in r(t) are above
1.3, the y-component is the ratio of how many points in r(t) are
between 0.7–1.3, and the z-component is the ratio of how many
points in r(t) are below 0.7. We will refer to this point as a velocity
ratio point. The final step involves statistically analyzing a group
of velocity ratio points over many participants, tasks, and types of
delay to look for differences.

Note that the mapping procedure described above to create a
velocity ratio point takes two entire translation trajectories over
any period of time and distills these trajectories down to a three-
dimensional space that fully characterizes the speed capitulation,
motion exaggeration, start-and-stop, andmany other strategy classes
that we did not speculate about. To illustrate, the speed capitulation
strategywould create a velocity ratio point tending toward [0, 1, 0]T ,
the motion exaggeration strategy would create a velocity ratio point
tending toward [1, 0, 0]T , and the start-and-stop strategy would cre-
ate a velocity ratio point approximately close to [0.5, 0.1, 0.4]. We
describe the results of this test on our data in the next section.

Our second analysis tool, which we will refer to as the overshoot
test, was designed to search for the visual feedback ignorance strat-
egy. Our reasoning here was that overshooting past a goal position
when onset latency is present is a strong indication that visual feed-
back is being used. This overshoot effect occurs because the user is
reacting to where they currently see the robot, thus causing a late
response by the robot (hence, an overshoot) when an onset delay
is present. Thus, if participants tended to ignore visual feedback
in the onset latency conditions, we would not expect there to be
any correlation between overshooting past a goal position and the
amount of onset latency since the user would be ignoring the visual
feedback that generally causes overshoot.

The overshoot test involved analyzing the data from the tracing
task, specifically inspecting the loop at the top of the cursive letter
“h” to observe how participants traversed this letter around the
apex of the letter. These areas along the curve can be seen in Figure
5. The test here looked at the top point in the writing plane and
compared it to the known height of the curve apex point. The
higher the user’s end-effector went in this region, the greater the
measured overshoot. We compare this overshoot measure across
all conditions and discuss our results in the next section.
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Figure 6: Three-dimensional mapping of the velocity ratio
points for slowness (left) and onset latency (right) condi-
tions across all tasks. Blue dots signify the base condition;
green dots signify speed1 or latency1; yellow dots signify
speed2 or latency2; and red dots signify speed3 or latency3.
§5.2 discusses the axes for the velocity ratio test (VRT).
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Figure 7: Tukey boxplots of data from the overshoot test.
Conditions are Base (B), Speed1 (S1), Speed2 (S2), Speed3 (S3),
Latency1 (L1), Latency2 (L2), and Latency3 (L3). Range values
signify standard error. The grid on the right denotes pair-
wise significance. A square is filled if the two conditions are
significantly different, with blue squares denoting p < .01
and yellow squares denoting p < .05. Units are in meters.

5.3 Motion Analysis Results
Results from our motion analyses procedures can be seen summa-
rized in Figures 6 and 7.We analyzed the velocity ratio points among
all tasks and participants and made comparisons using one-way
repeated measures multivariate analysis of variance (MANOVA).
There was a significant difference between motor adjustment strate-
gies between robot slowness and onset latency conditions, F (2, 73) =
11.86, p < .0001, Wilks’ Λ = 0.17. We also found a significant differ-
ence between different levels of slowness, F (2, 70) = 9.04,p < .0001,
Wilks’Λ = 0.14, and onset latency, F (2, 69) = 8.47,p < .0001, Wilks’
Λ = 0.11. At a high level, participants generally all exhibited a speed
capitulation strategy in the base condition. As the robot exhibited
more slowness, participants adjusted their movements and adjusted
to a motor exaggeration strategy, as seen by points all funneling to-
ward the [1, 0, 0]T corner of the velocity ratio space. As more onset
latency was added, participants adopted more of a start-and-stop
strategy, as seen by points tending toward the point [0.5, 0.1, 0.4]T .
This finding supports the observation made by Sheridan and Fer-
rell [25] that people tend to exhibit start-and-stop strategies when
facing onset latency.

We analyzed the results from the overshoot analysis using a one-
way repeated-measures analyses of variance (ANOVA). Pairwise
comparisons used Bonferroni Correction bymultiplying the p-value
generated from Student’s t-test by six. We observed a significant
difference in the amount of overshoot between base and latency3
and between speed1 and latency3. We also see a general trend that
the more onset latency is added, the more overshoot is present. This
observation suggests that participants generally did not exhibit
a visual feedback ignorance strategy as onset latency increased,
which supports our finding from the previous test that, in this case,
people instead favor the start-and-stop strategy.

6 GENERAL DISCUSSION
In this work, we characterized task performance, user perceptions,
and motor-control strategies employed in mimicry-control teleop-
eration when the robot is incapable of matching the user’s motions
due to delays in the system. Specifically, we investigated two poten-
tial sources of delay: (1) onset-latency delays that cause a temporal
gap between the user’s motion and the onset of the robot’s motion;
and (2) delays caused by the robot’s speed being too slow to keep
up with the speed of the user’s arm motions. We conducted a user

study that investigated the effects of multiple levels of onset latency
and robot slowness on mimicry-control and characterized the out-
come differences between these two sources of delay. We showed
that even novice users adeptly found alternate motor strategies to
control a robot arm considerably slower than their own arm, but no
strategy emerged to sufficiently overcome significant onset latency.

Limitations— Our work has numerous limitations that suggest
future extensions. First, our exploration has been limited to mimicry
type systems and a specific implementation. Understanding how
strategies translate to other systems would help us generalize the re-
sults. We also did not examine lower latency conditions as they are
not practical with our system. It is possible that even our base con-
dition already represents a significant adaptation strategy. Also, our
analysis in §5 only proposed twometrics to characterize motor strat-
egy adjustments. While our analysis provides fruitful observations
and clear patterns of strategy modulation, our work only shows that
these are instances of strategy adjustments during mimicry-control,
and we cannot claim that these comprehensively cover all motor
strategy adjustments. In future work, we will continue to explore
this space through additional evaluations and analysis procedures.
Furthermore, our work also only considers strategies to accommo-
date delays, and we do not consider other factors that may degrade
performance such as complex mappings or poor viewpoints. We
hope to explore the effects of these other factors, and in particular,
understand their relationship to delays.

While our work helps characterize the effects of delays, we have
not yet applied these insights to create improved strategies for
mitigating the effects. While improving the performance of systems
to reduce delays is almost always desirable, practical demands will
usually mean that some degree of delay is inherent in any real
system. Strategies to mitigate the effects of these delays could be
informed by the adaptation strategies that people are using.

Implications—We believe that our work can influence future tele-
operation and shared-control systems that utilize motion retar-
geting. An understanding of onset latency effects using mimicry-
control could inform when it is an appropriate or effective interface
to use, especially for performance critical applications. For exam-
ple, mimicry-control may be insufficient to directly control a robot
arm on the space station from ground control given the significant
time delays involved in sending signals at great distance. In such
a scenario, a supervisory control interface where, for example, a
user could demonstrate a full motion trace for the robot ahead of
time using motion capture, then review, edit, and confirm what the
robot’s resulting output actions would be from those input motions,
might be more desirable. Furthermore, our work could inform fu-
ture interface design decisions for mimicry-control. For instance,
augmented reality or predictive displays could overlay the user’s
arm over a visualization of the robot arm such that the user could
see the effects of time delays on the robot’s motion and adapt their
input motions accordingly given observed discrepancies.
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