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Summary 
 
Cell type annotation is a fundamental task in the analysis of single-cell RNA-sequencing data. ​In               

this work, we present CellO, a machine learning-based tool for annotating human RNA-seq data              

with the Cell Ontology. CellO enables accurate and standardized cell type classification of cell              

clusters by considering the rich hierarchical structure of known cell types, a source of prior               

knowledge that is not utilized by any existing methods. Furthermore, CellO comes pre-trained             

on a novel, comprehensive dataset of human, healthy, untreated primary samples in the             

Sequence Read Archive, which to the best of our knowledge, is the most diverse curated               

collection of primary cell data to date. CellO’s comprehensive training set enables it to run               

out-of-the-box on diverse cell types and achieves competitive or even superior performance            

when compared to existing state-of-the-art methods. Lastly, CellO’s linear models are easily            

interpreted, thereby enabling exploration of cell type-specific expression signatures across the           

ontology. To this end, we also present the CellO Viewer: a web application for exploring CellO’s                

models across the ontology. 

 

Introduction 
 

Cell type annotation is a fundamental task in the analysis of single-cell RNA-sequencing             

(scRNA-seq) data. Recently, a number of computational tools have been developed for            

automating the cell type annotation task. Nonetheless, many of these tools suffer from certain              

disadvantages that inhibit their use. First, many existing methods require the user to provide              

either a set of marker genes associated with each cell type ​(A. W. Zhang et al. 2019; Pliner,                  

Shendure, and Trapnell 2019) or a suitable training dataset with cells already annotated with              

cell type labels ​(Ma and Pellegrini 2020; Alquicira-Hernandez et al. 2019​; ​Tan and Cahan 2019)​.               

Marker gene-based approaches are challenged by the fact that there is not a canonical set of                

marker genes for most cell types ​(X. Zhang et al. 2019)​. Furthermore, finding an appropriate               

and labelled training set that contains all of the cell types in the target dataset can be                 

challenging, especially considering that existing approaches are sensitive to the chosen training            

set ​(Abdelaal et al. 2019)​.  

 

Second, many existing methods use flat-classification. Flat classification suffers from the           

possibility that predictions are logically inconsistent with the hierarchy of cell types. Specifically,             
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for a given query, a flat classifier may output a probability for a cell type that is larger than the                    

classifier's output for its parent cell type in the hierarchy ​(Obozinski et al. 2008)​. Such               

incoherent outputs reduce the scientific usefulness of the classifier. We assert that framing the              

cell type classification task as that of hierarchical classification against the Cell Ontology ​(Bard,              

Rhee, and Ashburner 2005) poses a number of advantages over flat-classification. The Cell             

Ontology provides a comprehensive hierarchy of animal cell types encoded as a directed acyclic              

graph (DAG). This DAG provides a rich source of prior knowledge to the cell type classification                

task that remains un-utilized in flat classification. In addition, if the algorithm is uncertain about               

which specific cell type the cell may be, the use of a hierarchy allows the algorithm to place a                   

cell internally within the graph rather than at a leaf node. Thus, for cells whose specific cell                 

types are absent from the training set, a classifier that uses a hierarchy is capable of providing                 

more informative output than simply claiming that the cell is “uncertain” as is implemented by               

some flat classifiers such as ACTINN ​(Ma and Pellegrini 2020​).  

 

Finally, those methods that do perform hierarchical classification do not make use of the rich               

hierarchical relationships between known cell types encoded by the Cell Ontology. For            

example, CHETAH ​(de Kanter et al. 2019) classifies cells against a hierarchy; however,             

CHETAH infers this hierarchy from the data rather than utilizing the existing hierarchy encoded              

by the Cell Ontology. Garnett ​(Pliner, Shendure, and Trapnell 2019) utilizes a hierarchy of cell               

types; however, these hierarchies must be pre-specified by the user. Furthermore, Garnett            

requires that each cell within the hierarchy be associated with a set of marker genes. To the                 

best of our knowledge, the only method that utilizes the graph-structure of an ontology for the                

task at hand is URSA ​(Lee et al. 2013)​, which classifies gene expression profiles against the                

BRENDA Tissue Ontology ​(Gremse et al. 2011)​.  

 

In this work, we present Cell Ontology-based Classification (CellO) a tool for annotating cells              

against the graph-structured Cell Ontology (​Figure 1A​). CellO is a discriminative, supervised            

machine learning approach for classifying clusters of cells in scRNA-seq data. CellO comes             

pre-trained on a novel comprehensive dataset comprising nearly all human primary samples in             

the Sequence Read Archive ​(Leinonen et al. 2011) and therefore arrives ready-to-run on             

diverse scRNA-seq datasets. CellO offers a complementary approach to marker gene-based           

methods for scenarios in which the test set contains cell types with poorly characterized marker               

genes.  
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Lastly, ​CellO makes extensive use of linear models, which are particularly amenable to             

interpretation. To enable their interpretation, we present a web-based tool, the CellO Viewer, for              

exploring the cell type expression signals uncovered by the model          

(​https://uwgraphics.github.io/CellOViewer/​). We benchmarked CellO on a collection of diverse         

single-cell datasets and found CellO capable of accurately annotating datasets that existing            

state-of-the-art and ready-to-run (i.e. come pre-trained) annotation methods were unable to           

accurately annotate, thus highlighting CellO’s ability to annotate diverse datasets out-of-the-box.           

Through its use of the Cell Ontology, its comprehensive training set, and the interpretability of its                

models, CellO ad​dresses the aforementioned limitations of existing tools, thus providing a            

practical tool for scRNA-seq cell type annotation.  (​Figure 1B​). 

 

Results 
 
A novel curated RNA-seq dataset of human primary cells 

In order to capture robust cell type signals, we sought a dataset of bulk RNA-seq samples                

comprising only healthy primary cells that originate from cells that have been isolated based on               

phenotypic characteristics downstream of gene expression itself (such as cell surface proteins).            

We thus avoid the circularity in using ground truth cell type labels determined by gene               

expression (via the expression of cell type-specific marker genes) as are often provided in              

scRNA-seq datasets. ​We did not wish to include cells that underwent multiple passages, were              

diseased, or underwent other treatments, such as in vitro differentiation, because these            

conditions alter gene expression. We therefore curated a novel dataset from the SRA consisting              

of healthy, untreated, primary cells. To do so efficiently, we leveraged the annotations provided              

by the MetaSRA project ​(Bernstein, Doan, and Dewey 2017) which includes sample-specific            

information including cell type, disease-state, and sample type. We then manually curated the             

samples selected via the MetaSRA by both annotating technical variables and refining cell type              

annotations (Transparent Methods). 

 

This curation effort resulted in a dataset comprising 4,293 bulk RNA-seq samples from 264              

studies. These samples were labeled with 310 cell type terms, of which 113 were the               

most-specific cell types in our dataset (i.e., no sample in our data was labelled with a                

descendent cell type term). These cell types were diverse, spanning multiple stages of             

development and differentiation (​Figure 1C​). We uniformly quantified and normalized (via log            

transcripts per million) gene expression from the raw RNA-seq data for these samples (​Figure              
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2A, ​Transparent Methods). To the best of our knowledge, this dataset is the largest and most                

diverse set of bulk RNA-seq samples derived from only primary cells. Prior to this work, the                

most comprehensive bulk primary cell transcriptomic dataset was compiled by ​(Aran, Hu, and             

Butte 2017)​, which contains data for 64 cell types from 6 studies. Whereas our dataset consists                

of only RNA-seq data, this prior dataset included samples assayed with several other             

technologies, such as microarrays. Another comprehensive set of primary cell expression data            

was collected by ​Mabbott et al. (2013)​, which contains primary cell data from 745 samples from                

105 studies; however, these data are exclusively from microarrays.  

  

Novel applications of hierarchical classification methods 

We frame the cell type classification task as hierarchical classification against the Cell             

Ontology’s DAG. The hierarchical classification task is inherently a multi-label classification task            

where each input sample (i.e. cell) is mapped to a ​set of output labels (i.e. cell types).                 

Hierarchical classification extends multi-label classification by further requiring that the output           

labels are ​consistent with the labels’ DAG. That is, for each label in a given output set of labels,                   

the label’s parent labels are also in the output set (​Figure 1A​). Moreover, when training a                

hierarchical classifier, samples that are annotated with specific labels (​i.e.​, terms that are lower              

in the DAG) can be aggregated in order to train the classifier to recognize more general,                

ancestral labels in the DAG. 

 

We implemented two strategies for performing hierarchical classification against the Cell           

Ontology’s DAG that both come packaged with CellO. First, we implemented cascaded logistic             

regression (CLR; Obozinski et al., ​2008), which entails classifying a sample in a top-down              

fashion from the root of the ontology downward via a collection of binary classifiers.              

Specifically, each binary classifier is associated with a cell type and is trained to classify a                

sample conditioned on the sample belonging to all of the cell type's parents in the ontology.  

 

Next, we implemented a collection of one-vs.-rest binary classifiers for each cell type in the               

DAG. We will refer to this as the ``independent classifiers'' approach. This approach suffers              

from the possibility that the classifiers' outputs will be inconsistent with the hierarchical structure              

of the ontology. An inconsistency occurs when the output probability for a given cell type               

exceeds that of one of its parent cell types in the ontology (​Figure 2B​). We tested the use of                   

independent logistic regression classifiers and found inconsistencies to be a frequent source of             

errors. Specifically, we performed leave-study-out cross-validation on the full set of bulk            

https://paperpile.com/c/d6I1q8/JgPTx
https://paperpile.com/c/d6I1q8/JgPTx
https://paperpile.com/c/d6I1q8/vl2Na


 
RNA-seq data and examined the consistency of all edges that were adjacent to at least one cell                 

type whose classifier produced a non-negligible probability (> 0.01) of the sample originating             

from that cell type. Of these edges, 12.1% were inconsistent (​Figure S1​). Nearly all samples               

(>99%) contained at least one inconsistent edge and 34% of samples contained at least one               

severely inconsistent edge in which the child classifier’s probability exceeded the parent            

classifier’s probability by at least 0.25. We will use the term “correction” to refer to the task of                  

reconciling the outputs of independent classifiers with a hierarchy (​Figure 2B​). 

 

To date, the one correction method that has been applied to the task at hand is Bayesian                 

network correction (BNC), which is implemented in the URSA tool (Lee et al., 2013). Therefore,               

as a baseline, we implemented a BNC algorithm following the description in Lee ​et al. (2013)                

(Transparent Methods). We also tested two correction methods that have yet to be applied to               

the cell type classification task: isotonic regression correction (IR; ​Obozinski et al. 2008) and a               

heuristic procedure called the True Path Rule (TPR; ​Notaro et al. 2017)​. IR uses a               

projection-based approach for correction that entails finding a set of consistent output cell type              

probabilities that minimize the sum of squared differences to the raw, and possibly inconsistent,              

classifier output probabilities. In contrast, TPR uses a heuristic procedure that involves a             

bottom-up pass through the ontology such that the output of children classifiers are averaged              

with the output of the parent classifier to allow information flow across the ontology graph.  

 

To test these correction methods, we first partitioned the bulk RNA-seq dataset into a              

pre-training and validation set (​Figure 2A​; Transparent Methods). Using this validation set, we             

performed a grid search to find the optimal parameters for training each binary logistic              

regression classifier, and given the optimal set of parameters, compared how well the             

aforementioned correction methods either enhanced or degraded accuracy over the samples in            

the validation set. Overall, we find that IR and TPR output probabilities similar to those output                

by the independent classifiers in regards to both average precision scores across the cell types               

in the validation set (​Figure 3A​) and precision-recall curves when considering each sample-cell             

type pair as an independent prediction (​Figure 3B​). This indicates that IR and TPR do not                

degrade performance in comparison to independent classifiers. In contrast, we found that the             

BNC approach significantly degraded performance (​Figure 3A, B​). We note that these results             

are in line with work by Obozinski ​et al ​(2008), which demonstrates that IR outperforms BNC on                 

the hierarchical protein function prediction task. Although both IR and TPR yielded similar             

results, we use IR as our correction method of choice due to its simplicity. 
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We also used this partition of the bulk RNA-seq samples to tune the parameters of the CLR                 

algorithm (Transparent Methods). We found that after tuning, both IR and CLR achieved             

similar median F1-scores and median average-precisions across cell types on the validation set             

(​Figure S13​) and therefore both are included in the CellO software and evaluated throughout              

the remainder of this study 

 

Comparison to existing methods 

We trained both CLR and IR on the full set of bulk RNA-seq samples in order to test their                   

performance on single-cell data (​Figure 2A​). We note that training a single-cell classifier with              

bulk RNA-seq data may lead to models being poorly calibrated to the sparse single-cell              

expression profiles. To address this challenge, we first cluster single-cell data using the Leiden              

community-detection algorithm ​(Traag, Waltman, and van Eck 2019) using the default resolution            

parameter of 1.0, as implemented in the Scanpy Python package ​(Wolf, Angerer, and Theis              

2018)​, and then compute each cluster’s mean expression profile. The mean expression profiles             

are less sparse than those of the individual cells and thus better resemble the bulk RNA-seq                

data on which the algorithms were trained. CellO first classifies each cluster based on its mean                

expression profile and then assigns each cell to its cluster’s assigned cell types.  

 

We compiled a dataset consisting of 7,366 healthy primary cells originating from            

non-droplet-based RNA-seq assays, such as SMART-Seq2 ​(Picelli et al. 2013) and MARS-seq            

(Jaitin et al. 2014)​, from the SRA in a manner similar to that used for compiling the bulk                  

RNA-seq training data. This dataset originated from 14 studies and were labeled with 125 cell               

type terms, of which 32 were most specific to the data. Of these cells, 4,936 were of cell types                   

that were included in the bulk RNA-seq training set. This subset of cells originate from 12                

studies and were labeled with 71 cell type terms of which 16 were most specific to the dataset.                  

We note that for many of the cells used in this analysis, the ground-truth cell types provided by                  

the authors of the data were determined via ​in silico and/or manual approaches (e.g. via               

heuristic marker-gene based approaches) and thus, this analysis can be understood as an             

analysis of the ​consistency between the cell types as annotated by the authors and those               

annotated by the automated methods explored in this work.  

 

We use the subset of 4,936 cells to evaluate IR, CLR, as well as a baseline                

one-nearest-neighbor (1NN) algorithm that simply returns the cell type labels of the most similar              
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sample in the training set to the query expression profile using Pearson correlation as the               

similarity metric. We evaluated two aspects of these algorithms’ classifications. First, we            

compute the average-precision (a measure of area under the precision-recall curve) on each             

cell type’s output probabilities. Second, for each cell, we evaluate a set of binary yes-no               

decisions for each cell type that result from thresholding the raw output probabilities and              

enforcing each cell to be annotated with only one most-specific cell type (​Figure 2B;              
Transparent Methods). We evaluate these binary decisions using precision, recall, and           

F1-score (harmonic mean of precision and recall). We modified the evaluation metrics to take              

into account samples that were labelled with a general cell type, but not a specific cell type (e.g.                  

T cell versus CD8+ T cell; Transparent Methods). 

 

We found that IR and CLR out-performed 1NN according to F1-score, precision, and             

average-precision (​Figure 4A, B, C​). Specifically, IR, CLR, and 1NN produced median            

F1-scores of 0.81, 0.85, and 0.63 respectively across all cell types. The cell types on which                

classification performance was poor were generally more-specific and clustered within the           

hierarchy (​Figure 4D​). We note that CellO’s average precision scores across cell types tend to               

be higher than its F1-scores (​Figure 4D​). This discrepancy indicates that CellO is doing well at                

discriminating among these cell types; however, the decision thresholds used by CellO to output              

hard-classifications for some cell types may be non-optimal. We hypothesize that this is due to               

some classifiers being poorly calibrated, especially for cell types lower in the ontology. This              

may due to there being fewer ​studies in the training set generating these cell types and thus, for                  

a given cell type, CellO’s binary classifiers may be more prone to fitting the batch effects present                 

in these fewer studies (​Figure S16​).  

 

We also compared CellO to two existing methods, scMatch ​(Hou, Denisenko, and Forrest 2019)              

and SingleR ​(Aran et al. 2019)​. scMatch and SingleR are most comparable to CellO because               

they come packaged with comprehensive reference datasets of human cells. Like CellO, these             

methods are designed to run out-of-the-box on diverse single-cell datasets. scMatch comes            

packaged with a reference dataset comprising data from the FANTOM5 project ​(Lizio et al.              

2017)​. SingleR comes packaged with two comprehensive human reference datasets: a dataset            

comprising data from the Blueprint ​(Fernández et al. 2016) and ENCODE ​(Sloan et al. 2016)               

projects, and a reference set from the Human Primary Cell Atlas ​(Mabbott et al. 2013)​. We also                 

built a reference set for SingleR from CellO’s training set in order to isolate methodological               

differences between SingleR and CellO. Unfortunately, scMatch does not support the creation            
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of a custom reference set, and therefore we were unable to perform this experiment with               

scMatch. To enable a comparison between scMatch, SingleR, and CellO, we project the outputs              

of scMatch and SingleR onto the Cell Ontology in order to evaluate scMatch and SingleR within                

the hierarchical classification framework. Specifically, for a given cell annotated by one of these              

methods with some cell type , we also annotate the cell with all ancestors of according to                  

the Cell Ontology.  

First, we note that CellO’s training set included over 50% more of the cell types in this test set                   

compared to those of scMatch and SingleR. In fact, most cell types in this test set, such as                  

pancreatic islet cell types, are absent from scMatch and SingleR’s reference sets, thus             

indicating that a user would be required to supply their own reference set for annotating these                

cell types (​Figure 5A​). We thus evaluated each method on only cell types that exist in each                 

respective method’s prepackaged reference set and ​found that CellO outperformed existing           

approaches (​Figure 5B​). SingleR performed poorly with CellO’s training set, which may be due              

to the high number of samples in CellO’s training set, the high number genes (i.e. including                

non-coding genes), and the fact that CellO contains bulk RNA-seq samples at a higher level in                

the ontology (​Figure S4A​). We note that in this analysis, for a given method, we may remove                 

from the analysis a specific cell type that is absent from a given method’s training set (e.g.                 

stomach epithelial cell), but we would keep an ancestral cell type term (e.g. epithelial cell) if the                 

method’s training set contains a sample labelled with this ancestral term (e.g. a sample labeled               

as intestinal epithelial cell).  

Next, we evaluated CellO on FAC-sorted peripheral blood mononuclear cells from ​Zheng et al.              

(2017) that were sequenced with Chromium 10x. We selected this dataset because it is one of                

the few droplet-based datasets for which the cell type labels are determined phenotypically (via              

sorting) rather than computationally (via expression analysis). To reflect the size of typical             

single cell datasets, we subsampled 2,000 cells from each of the ten sorted cell types and                

aggregated these cells together creating a dataset consisting of 20,000 cells. We first compared              

IR and CLR to the 1NN baseline and again found that IR and CLR outperformed 1NN with                 

respect to median F1-score, although the difference between IR/CLR and 1NN was smaller than              

in the comparison than on the aforementioned non-droplet-based scRNA-seq dataset (​Figure           
6D​). Specifically, IR, CLR, and 1NN produced median F1-scores of 0.97, 0.96, and 0.95              

respectively across all cell types. 

Next, we compared CellO to scMatch and SingleR on this PBMC dataset. In this analysis, we                

http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=C#0
https://www.codecogs.com/eqnedit.php?latex=C#0
https://paperpile.com/c/d6I1q8/sUjmA
https://paperpile.com/c/d6I1q8/sUjmA


 
also ran SingleR using an immune-specific reference set of purified immune cells from ​Monaco              

et al. (2019)​. The cell types in this dataset are better represented in scMatch and SingleR’s                

respective reference sets, and thus, a comparison between CellO and these methods on this              

data better isolates performance differences between these methods. Like scMatch and           

SingleR, CellO struggled to accurately classify the T cell subtypes (​Figure 6A-C, S2C, S3,              
S4B​). Among the methods compared here, SingleR with the Monaco et al. ​reference set most               

accurately classified the T cell subtypes (​Figure S3​), though we note that this reference set is                

specialized for immune cell types whereas the other reference sets, including CellO’s, are more              

broad. We also note that CellO produced high average precision scores on most cell types               

including many of these T cell subtypes. Again, this indicates that CellO’s classifiers have              

learned to discriminate between these cell types; however, the threshold for calling these cell              

types may be non-optimal. 

Inspection of performance on challenging and diseased samples 

We examined CellO’s classifications on three challenging datasets. Two of these datasets            

comprised subsets of the 7,366 cells from non-droplet-based assays and are challenging            

because they contained cells for which their combination of cell types was absent from CellO’s               

training set. First, we examined CellO’s accuracy on 1,978 healthy pancreatic islet cells from              

Segerstolpe et al. (2016)​, which includes cell types that are absent from the bulk RNA-seq               

training set, specifically, ductal cells, acinar cells, epsilon cells, and delta cells. We found that               

CellO was able to correctly annotate the acinar cells as glandular epithelial cells, which is an                

ancestral cell type to acinar cells in the Cell Ontology (​Figure 7A, S2A​). This highlights the                

advantage of classifying against a hierarchy in that it enables CellO to annotate cells with a term                 

higher in the ontology DAG when it is unsure about a cell’s more-specific cell type. We also                 

note that a number of cells were uncharacterized in the original study due to not meeting a                 

stringent quality control filter. CellO annotated many of these cells as pancreatic A cells (a.k.a.               

pancreatic alpha cells), which is plausible owing to both their close position to annotated A cells                

according to UMAP, which is known to preserve some level of global structure in high               

dimensional data (​Becht et al. 2018)​, as well as the fact that A cells were found to be the most                    

abundant endocrine cell type in ​Segerstolpe et al. (2016) of those that passed their stringent               

quality control filtering.  

We also further examined CellO’s classification on 1,977 fetal neural cells from ​La Manno et al.                

(2016)​. Although the bulk RNA-seq training data contains samples of both embryonic cells and              

cells of various neural cell types, it does not contain any sample labeled as ​both neural cell ​and                  
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embryonic cell. Despite this discrepancy, CellO was able to annotate these cells with             

reasonable cell type labels (​Figure 7B, S2B​). We note that the microglial cells were annotated               

as phagocytes, which are an ancestral term to microglial cells in the Cell Ontology. Similarly,               

CellO annotated the glial cells as neuron associated cells. These examples again highlight             

CellO’s ability to annotate cells with a term higher in the ontology DAG when it is unsure about a                   

cell’s more-specific cell type.  

 

Finally, we examined CellO’s classification on eight lung adenocarcinoma tumor samples from            

Laughney et al. (2020) that were sequenced with 10x. This dataset provides a good, yet               

challenging test set for CellO due to a) the heterogeneity of constituent cell types, b) the fact                 

that it contains cell types absent from CellO’s training set, and c) these cells originate from                

diseased tissue thereby providing insight into how CellO will perform on non-healthy samples.             

We compared CellO’s output to the annotations provided by the authors, which were the result               

of a custom,​ in silico​ cell type annotation pipeline.  

 

Overall, we found a high correspondence between the labels provided by CellO and the authors’               

annotation pipeline (​Figure 8, S5-S12​). When the two methods differed, we attempted to             

determine which method is likely to be correct using manual inspection of known marker genes               

and in many of these discrepancies, CellO produced the correct cell type labels. For example, in                

Tumor LX675 and LX682, CellO correctly annotates putative endothelial cells (​Figure 8, S5​),             

based on expression of PECAM1 (​Figure 8C​) and CD34 (data not shown), whereas the authors               

of these data labelled these as epithelial cells. In tumor LX675, CellO labelled the myeloid               

dendritic cell population as CD1c+ myeloid dendritic cells, a more specific cell type than that               

provided by the authors (​Figure 8​). In tumor LX682, CellO correctly annotates the putative              

fibroblasts as evidenced by their expression of FAP ​(Puré and Blomberg 2018) (​Figure S5​) and               

S100A4 ​(Strutz et al. 1995​; data not shown). In tumor LX679, CellO appears to correctly               

annotate the plasmacytoid dendritic cell population as evidenced by the expression of IL3RA             

(​Figure S6​), a known marker for this cell type ​(Collin, McGovern, and Haniffa 2013)​. We also                

note that for cells whose likely true cell types are absent from CellO’s training set, CellO was                 

able to label these cells using a correct, but more general cell type. For example, in tumor                 

LX675, mast cells were absent from CellO’s training set, yet CellO accurately labelled these              

cells as hematopoietic cells (​Figure 8​). Similarly, when CellO was unsure of the labels for cells                

of cell types for which training data was sparse, such as for plasma cells and pericytes, CellO                 

labelled these cells as more general cell type terms lymphocyte of B lineage and connective               
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tissue cell, respectively (​Figure 8​). Lastly, we note some of the most clear-cut cases in which                

the authors’ pipeline produced correct labels, but CellO erred. For example, in tumor LX679,              

CellO labelled many of the epithelial cell types as prostate epithelial cells (​Figure S6​), which is                

clearly incorrect given that these are lung tumor samples. Other errors produced by CellO are               

due to rarer cell types within the sample clustering together with a more common, similar cell                

type. For example, in tumor LX682, the myeloid dendritic cells are labelled by CellO as               

macrophages due to these cells clustering together with the macrophage population (​Figure            
S5​). 
 

Evaluation of robustness to clustering 

In order to test CellO’s robustness to cluster granularity when clustering single-cell data, we              

tested CellO on the Zheng et al. PBMC dataset and Laughney et al. lung cancer dataset using                 

differing values for Leiden’s resolution parameter. On the Zheng et al. dataset, we tested CellO               

with five values for the resolution parameter and found both CLR and IR to perform similarly                

across these settings (​Figure S15​). In contrast to the Zheng et al. dataset, the lack of robust                 

ground-truth labels for the Laughney et al. dataset made it difficult to perform a similar               

assessment. Instead, on this dataset, we ran CellO using the default resolution of 1.0 as well as                 

a higher resolution of 8.0 and then manually inspected the differences in the outputs produced               

by these two settings (​Figure ​S5-S12​). Overall, we found that the higher resolution led CellO to                

classify clusters with more granularity, but at the cost of some errors. For example, on tumor                

LX679 and LX682, CellO was able to correctly classify the putative myeloid dendritic cells at the                

resolution of 8.0 whereas at the default resolution of 1.0, these cells were labelled incorrectly as                

alveolar macrophages (​Figure S5, S6​). This is likely due to the fact that the dendritic cells were                 

subsumed into the macrophage cluster at the lower resolution. However, in other instances, the              

higher resolution led to errors. These errors are likely due to the fact that at a more granular                  

clustering resolution, each cluster’s mean expression value remained sparse due to the            

averaging of fewer cells. For example, in tumor LX679, cells correctly labelled as respiratory              

epithelial cells at a resolution of 1.0 were incorrectly labelled as prostate epithelial cells at a                

resolution of 8.0 (​Figure S6​).  

 

User-friendly software 

We provide a Python package for running CellO, using either IR or CLR, on a user-provided                

gene expression matrix (​https://github.com/deweylab/CellO​). CellO reduces the burden of         

reformatting and preprocessing an input expression matrix by accepting a variety of input file              

https://github.com/deweylab/CellO


 
formats, including comma or tab-separated text files and HDF5, and by accepting expression             

data in a variety of units including counts or transcripts per million (TPM). To address the                

scenario in which the input dataset’s genes do not match those expected by the pre-trained               

classifiers, we provide functionality for a user to re-train the models on the bulk RNA-seq               

training set with a custom gene set. On a personal laptop, training a new classifier took 31                 

minutes to train IR and 11 minutes to train CLR on the full set of 58,243 GENCODE genes.                  

Training time is reduced when trained on a smaller set of genes (e.g. only protein-coding               

genes). We also note that the time required for CellO to perform classification is low because of                 

the fact that it uses pre-trained logistic regression classifiers operating on cluster-averaged            

expression profiles. On the Zheng et al. (2020) dataset, CellO took six minutes to run on a                 

personal laptop (including time for clustering) whereas scMatch required six hours and nine             

minutes (run with five cores), and SingleR required between nine and 22 minutes depending on               

the reference set used. Finally, we note that relative performance of IR and CLR varies across                

cell types. To guide a user on their selection of either IR or CLR, we provide the average                  

precision values achieved by both methods on each cell type in the bulk RNA-seq validation set                

(​Table S1​). We also provide average precision values and F1-scores achieved by both methods              

on each cell type on the test set of 4,936 non-droplet-based single-cells whose cell types were                

present in the bulk RNA-seq training set (​Table S2​).  
 

Lastly, we note that due to CellO’s comprehensive training set that comprises cell types from               

many organs and tissues, some of CellO’s errors are due to CellO annotating cells using a cell                 

type that is unique to a tissue type that differs from the known tissue type of the target sample.                   

For example, in some lung cancer tumors from Laughny et al., endothelial cells were classified               

as “endothelial cell of umbilical vein” (​Figure S5, S6, S9​), which is clearly incorrect given that                

these samples were taken from the lung. This error is likely due to the fact that the endothelial                  

cells in CellO’s training set largely originate from umbilical cord samples. Because these errors              

can be easily caught by the user, the CellO package enables a user to fix such errors by                  

enabling the user to supply a blacklist of tissue types that do not pertain to the target sample.                  

CellO then uses edges between the Cell Ontology and the Uberon ontology (which encodes              

anatomical entities; ​Mungall et al. 2012) to filter out cell types from CellO’s output that are                

uniquely located in the blacklisted tissue types. For example, by blacklisting the Uberon term              

“umbilical vein”, CellO correctly classifies the endothelial cells from Laughney et al. 

 

Interpretability of models 

https://paperpile.com/c/d6I1q8/0dh8


 
CellO makes extensive use of linear models, which are particularly amenable to interpretation             

especially when the coefficients are sparse ​(Gleicher 2013)​. Although CellO’s models are not             

regularized to be sparse (as in Gleicher 2013), we sparsify them by selecting the top-ten genes                

per cell type according to the magnitude of the coefficients associated with each gene within               

each cell type’s one-vs.-rest binary classification model, which is used for CellO’s IR classifier.              

To enable their interpretation, we present a web-based tool, the CellO Viewer, for exploring              

these discriminative genes uncovered by the models       

(​https://uwgraphics.github.io/CellOViewer/​). The tool supports two modes of operation: a         

cell-centric mode (​Figure 9A​) and a ​gene-centric mode (​Figure 9B​). In the cell-centric mode the               

user can select cell types via a graphical display of the Cell Ontology in order to view and                  

compare the most important genes for distinguishing those cell types. In the gene-centric view,              

the user can select genes and explore which cell types these genes are most important for                

distinguishing from the remaining cell types. The CellO Viewer uses an interactive display of              

the Cell Ontology’s graph to enable the user to navigate between cell types across the ontology. 

 

We found that across diverse cell types, many known cell type-specific marker genes were              

recovered by the CellO models and are presented by the CellO Viewer. For example, CD3D,               

CD3E, and CD3G, which are canonical markers for T cells, were all present within the top ten                 

genes ranked according to the magnitude of their coefficients within the logistic binary             

regression model used for distinguishing T cells from all other cell types. Similarly, CD4 and               

CD8 were present in the top genes for the CD4+ T cell and CD8+ T cell models, respectively                  

(​Figure 89​). In a more complex example, the genes GCG, LOXL4, DPP4, GC, and FAP, known                

markers for pancreatic alpha cells, and INS, IAPP, and ADCYAP1, known markers for             

pancreatic beta cells ​Segerstolpe et al. (2016)​, all appear within the top ten genes for their                

respective cell types.  

 

Interestingly, certain genes appear in the top ten coefficients for broad cell types, but not more                

specific cell types, indicating that CellO is able to find signals specific to broad cell type                

categories. For example, DDX4 appeared in the top ten genes for distinguishing germ line cells,               

but did not appear within the top ten genes for any of the more specific germ cell subtypes.                  

DDX4 is known to be expressed in germ cells across both sexes ​(Hickford et al. 2011)​.                

Similarly, the gene NRG1 appeared in the top ten genes for distinguishing precursor cells​, but               

did not appear within the top ten genes for any of the more specific cell types that are                  

descendents of precursor cells within the ontology. NRG1 is known to play a role in the                
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development of a number of organ systems ​(Lemmens, Doggen, and De Keulenaer 2007​; ​Mei              

and Xiong 2008)​.  
 

Discussion 

In this work, we explore the application of hierarchical classification algorithms to cell type              

classification with the Cell Ontology using a novel, well-curated set of human primary cell              

RNA-seq samples. This dataset may prove useful for future investigations of cell type             

expression patterns or for use in cell type deconvolution methods (​Aran et al. 2019​; ​Newman et                

al. 2015)​. We demonstrate that the trained classifiers perform well across cell types in diverse               

single-cell datasets and outperformed existing cell type annotation methods when trained on            

their comprehensive reference sets. We packaged these classifiers into an easy-to-run Python            

package called CellO.  

In our exploration of methods for correcting the independent one-vs.-rest classifiers, we found             

that discriminative methods outperformed the generative BNC approach implemented in URSA           

(Lee et al. 2013). We hypothesize that BNC suffers in comparison due to two causes. First,                

BNC’s probabilistic model makes strong assumptions regarding the generative process of           

classifier scores and true cell type assignments. Second, BNC requires estimating the            

conditional probability distribution of each classifier’s output scores (i.e. distance from the            

decision boundary) conditioned on the true cell type labels, which may be difficult to estimate               

accurately given the limited quantity of training data available for each cell type.  

 

By using linear models, CellO’s trained parameters are easily interpreted as cell type specific              

signatures across the ontology. However, we note that since certain cell types undergo similar              

sorting and preparation procedures (e.g., fluorescence activated cell sorting), it remains unclear            

to what extent these procedures affect gene expression and thus confound cell type. We sought               

to mitigate this effect by using data from a diversity of studies. We also note that the CLR                  

algorithm may help to further mitigate this effect, since the binary classifiers trained in this               

framework for each cell type condition on the sample belonging to the parent cell types. Thus,                

for a given cell type, if samples of its parent cell types were prepared through similar                

procedures, the learned model parameters for that cell type will better capture biological cell              

type signatures.  

There are a number of avenues that require further investigation. First, future work will entail               
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curating comprehensive training sets from the SRA for other species such as mouse. This work               

will rely partly on future inclusion of standardized mouse metadata in the MetaSRA. 

Second, CellO is a cluster-based annotation method and thus, its accuracy relies, in part, on the                

robustness of the clustering algorithm. If the clustering is too coarse, rare cell types may be                

missed. If clustering is too fine, the algorithm may not be combining enough data to accurately                

annotate each cluster. Determining the optimal clustering in scRNA-seq data is a challenging,             

open problem that will require further investigation ​(Kiselev, Andrews, and Hemberg 2019)​.            

Nonetheless, we demonstrated that CellO accurately classified a number of diverse datasets            

using Lieden’s default parameter in the Scanpy package.  

Third, we note that calibrating discriminative models trained on bulk RNA-seq data and applying              

them to single-cell data is challenging. In this work, we developed techniques for closing the               

gap between the performance of CellO when evaluated with average precision versus when             

evaluated with F1-score. The very high average-precision scores across many cell types            

indicates CellO is learning an accurate representation of these cell types, and that with better               

calibration, CellO’s accuracy when making binary yes-no decisions for each cell type could be              

improved. Future work will investigate alternative approaches to calibrating CellO’s models in            

order to improve CellO’s binary cell type decisions.  

Fourth, the Cell Ontology encodes anatomical and functional relationships between cell types;            

however, there exist a number of other relationships between cell types that could be utilized to                

improve accuracy. Such examples include lineage-based relationships (i.e. one cell type derives            

from another cell type) or evolutionary relationships between extant cell types and ancient cell              

types ​(Arendt et al. 2016)​. For example, the evolutionary relationships between cell types may              

be utilized to address inconsistencies in the independent classifiers approach that arise when             

certain cell types share a parent cell type via the currently encoded “is a” relationship, but are                 

purported to have divergent evolutionary origins. 

Fifth and finally, we expect the performance of hierarchical classifiers to improve as both more               

data is collected and as the Cell Ontology is expanded. Most importantly, we expect the               

calibration of the classifiers to improve as more training data becomes available for each cell               

type. More training data will be collected both as data is continually added to the SRA and as                  

improvements are made to the SRA's metadata thereby allowing retrieval of previously            

undiscovered primary cell samples.  
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Figure Legends 

Figure 1. ​Overview of CellO. (​A​) A schematic overview of CellO’s hierarchical classification              
approach. CellO performs hierarchical classification with the Cell Ontology. Given a gene            
expression profile, CellO annotates the cell with a set of cell types (grey nodes) that are                
consistent with the hierarchical structure of the Cell Ontology. (​B​) We compare CellO to eight               
recent cell type annotation methods regarding the criteria we surmise are desirable in a cell type                
classification approach: whether the method (1) arrives pre-trained and can run out-of-the-box,            
(2) incorporates a hierarchy of cell types, (3) specifically uses the Cell Ontology as its hierarchy,                
(4) requires cell type-specific marker genes, (5) uses a model that can be interrogated to better                
understand how it arrived at its decision, and (6) whether the method operates on clusters or                
single-cells. We compare CellO to scMatch (​Hou, Denisenko, and Forrest 2019)​, SingleR ​(Aran             
et al. 2019)​, scCatch ​(Shao et al. 2020)​, CHETAH ​(de Kanter et al. 2019)​, Garnett ​(Pliner,                
Shendure, and Trapnell 2019)​, CellAssign ​(A. W. Zhang et al. 2019)​, ACTINN ​(Ma and              
Pellegrini 2020)​, scPred ​(Alquicira-Hernandez et al. 2019)​, CaSTLe ​(Lieberman, Rokach, and           
Shay 2018)​, and SingleCellNet ​(Tan and Cahan 2019)​. CellO meets more desirable criteria than              
existing methods. (​C​) Euler diagrams of the cell types within the bulk RNA-seq expression              
profiles used to train CellO. This training set comprises most primary cell bulk RNA-seq              
samples within the SRA and consists of diverse cell types spanning various tissues,             
developmental stages, and stages of differentiation. These diagrams were created with nVenn            
(Pérez-Silva, Araujo-Voces, and Quesada 2018)​. 

Figure 2. ​Overview of analyses and CellO’s algorithm. ​(​A​) A schematic illustration of the              
datasets and analyses performed in this study. Initial candidate bulk RNA-seq samples were             
selected from the SRA via the MetaSRA, filtered for errors, and quantified, which resulted in a                
comprehensive bulk RNA-seq training set consisting of healthy human primary cells. This            
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training set was split into a pre-training and validation set for tuning the parameters of the binary                 
classifiers as well as for evaluating the graph-correction methods (Transparent Methods). The            
full bulk RNA-seq dataset was then used to train the final models that were then evaluated on                 
three sets of scRNA-seq data. The first set consisted of an aggregation of diverse              
non-droplet-based datasets from the SRA. The second dataset consisted of FAC-sorted PBMCs            
from Zheng et al. (2017). The third set consisted of primary lung tumor cells from Laughney et                 
al. (2020). (​B​) A schematic illustration of CellO’s classification procedure. First, for a given              
sample, the raw classifier probabilities are corrected with the cell ontology using IR (if CLR is                
used, this step is not necessary). We illustrate one edge of the graph whose incident nodes                
have probabilities that are logically inconsistent with the hierarchy, and thus require correction,             
because the child node has a higher probability than the parent. Once corrected, cell types               
whose raw probabilities meet their respective decision-threshold are selected. Among these, the            
most-specific cell types (i.e. lowest in the ontology) are examined and the cell type with the                
highest output probability is selected. CellO outputs this final selected cell type along with all               
ancestor terms. 
 
Figure 3. ​Reconciling the outputs of independent classifiers with a hierarchy. ​(​A​) Average             
precision scores across all cell types for the independent classifiers (Ind.), as well as for IR,                
TPR, and BNC on the validation set. (​B​) Each paired sample and cell type prediction was                
considered independently. The set of all such predictions was ordered according to their             
prediction probability and the corresponding precision-recall curve was constructed for the           
independent classifiers, IR, TPR, and BNC. 

Figure 4. Results on non-droplet-based single-cell data. ​CellO’s performance on the 4,936            
non-droplet-based cells considering only cells whose cell types are present in the bulk RNA-seq              
training set. We compare the distributions of (​A​) F1-score (​B​) precision, and (​C​)             
average-precision across all such cell types. (​D​) The subgraph spanning the non-droplet-based            
cells where each cell type is colored according to CellO’s (IR) F1-score (top) as well as by                 
average-precision (bottom).  

Figure 5. ​Comparison of CellO to existing approaches on non-droplet-based single-cell           
data. Evaluating CellO, SingleR, and scMatch on the non-droplet-based cells. (​A​) The fraction             
of cell types in the single-cell test dataset that are also present in each method’s training set. IR                  
and CLR are not shown separately because they share the same training set. We evaluate               
SingleR’s built in reference sets from the Human Primary Cell Atlas (HPCA) and             
BluePrint+ENCODE (BE). (​B​) The distribution of both F1-scores (left) and precisions (right) for             
only those cell types that are in each method’s training set. We compare CellO to scMatch,                
SingleR with the Human Primary Cell Atlas (HPCA), and SingleR with the Blueprint+ENCODE             
reference (BE). Note, each distribution evaluates different sets of cell types depending on the              
particular subset of cell types present in each method’s training set.  

Figure 6. ​Results on 10x PBMC data. ​(​A​) The subgraph of the Cell Ontology spanning the 10x                 
PBMC dataset from Zheng et al. (2017). Each cell type is colored according to CellO’s (IR)                
F1-score as well as (​B​) average-precision. (​C​) UMAP plots of the single-cell dataset where cells               
are colored by their true cell type (top) as well as the most-specific predicted cell type (i.e.                 
lowest in the ontology) as output by CellO (bottom). (​D​) Boxplots displaying the distribution of               
F1-scores across all cell types for IR, CLR, 1NN, scMatch, SingleR with the Human Primary Cell                
Atlas (HPCA), SingleR with the Blueprint+ENCODE reference (BE), and SingleR with the            



 
Monaco et al. reference (M). 

Figure 7. ​Examination of CellO’s performance on difficult datasets. (​A​) UMAP plots of all              
healthy cells in ​Segerstolpe et al. (2016) including cells for which their specific cell types are not                 
present in Cello’s bulk RNA-seq training set. Cells are colored according to their true cell type                
(left) and (IR) predicted cell type (right). Highlighted are CellO’s predictions made on pancreatic              
acinar cells (top-right ovals) as well as a subset of uncharacterized pancreatic epithelial cells              
predicted as A cells (center ovals). (​B​) UMAP plots of human, embryonic neural cells from ​La                
Manno et al. (2016)​. Cells are colored according to their true cell type (left) and predicted cell                 
type (right). Highlighted are CellO’s predictions made on both the microglial and glial cells and               
note that CellO annotates these cells using terms that are higher in the ontology’s graph than                
their true terms.  

Figure 8. ​Examination of CellO on diseased cells. (​A​) UMAP plots of lung adenocarcinoma              
tumor LX675 from Laughney et al. (2020) colored by CellO’s output using IR and a Leiden                
resolution parameter of 1.0 (left) and the original cell type labels provided by the authors. We                
highlight four subpopulations comprising putative CD1C+ myeloid dendritic cells (top left),           
endothelial cells (top right), plasma cells (bottom left), and mast cells (bottom right). (​B​) The               
legend for coloring cells in panel (A) and (B). (​C​) For UMAP plots of cells colored by their                  
expression, in units log(TPM+1), of CD1C, a marker for CDC1+ myeloid dendritic cells,             
PECAM1, a marker for endothelial cells, SDC1, a marker for plasma cells, and KIT, a marker for                 
mast cells. 

Figure 9. ​The CellO Viewer. Screenshots of the CellO Viewer web application for enabling the                
exploration of cell type-specific expression signatures across the Cell Ontology. ​(​A​) Comparing            
the top-ten genes between CD4+ T cells and CD8+ T cells (red nodes in the Graph View)                 
ranked by the magnitude of their coefficients in their corresponding models. Genes that are              
shared between the two lists are highlighted with the same color. The CellO Viewer displays               
genes whose expressions are both positively correlated (green) and negatively correlated (red)            
with the selected cell types. (​B​) A screenshot of the gene-centric mode of the CellO Viewer with                 
GFAP, an astrocyte marker, selected. For a given selected gene, the CellO Viewer will display               
the cell types within the DAG (top) and in list-form (bottom) for which the selected gene appears                 
within the top-ten genes ranked by each model’s coefficients.  
 

 

 

 

 

 

 

 

https://paperpile.com/c/d6I1q8/FPFBK
https://paperpile.com/c/d6I1q8/Fe1Yc
https://paperpile.com/c/d6I1q8/Fe1Yc


 
 

 

 

 

Transparent Methods 

Methods Details 

Data curation 

To create the training set of primary cell bulk RNA-seq samples, we first selected all samples                

labelled as a “primary cell” sample by the MetaSRA (v1.4). Thus, we followed the conservative               

definition for a primary cell sample by Bernstein et al. (2017), which requires that a sample has                 

not undergone passaging beyond the first culture. We followed this selection with a manual              

curation of each sample’s technical variables by consulting sources of metadata that are not              

captured by the MetaSRA annotation process, such as fields in Gene Expression Omnibus             

(Clough and Barrett 2016) records and each study's publication. In total, we annotated 27,097              

samples (available to download at ​http://deweylab.biostat.wisc.edu/cell_type_classification/​).      

We then removed all samples that were either incorrectly labelled as primary cell samples or               

had been experimentally treated. When found, we also corrected errors in the            

MetaSRA-provided Cell Ontology labels by both adding additional cell types that were missed             

by the MetaSRA as well as removing incorrect cell type labels. This curation effort resulted in                

the final set of 4,293 samples.  

 

Data processing 

We quantified the gene expression of all RNA-seq samples from the SRA (both bulk and               

non-droplet-based single-cell samples) with kallisto (v0.43.1) ​(Bray et al. 2016) using human            

genome release GRCh38 with GENCODE annotation version 27. We chose kallisto for gene             

expression quantification in order to prioritize processing speed on this large dataset, figuring             

that any small loss in accuracy (at the gene level) relative to a less approximate, but slower                 

approach would not be significant for the cell type classification task. This produced estimated              

counts for 200,401 isoform-level genomic features. We summed the transcripts per million            

(TPM) values by gene to produce TPM’s for 58,243 gene-level features. The curated metadata              

and associated quantified samples are available to download at         
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http://deweylab.biostat.wisc.edu/cell_type_classification​.  

Notation 

In the following descriptions of the methods used in this work, we let denote a gene                 

expression profile, where is the number of considered genes and is measured in units of                 

log(TPM+1) where TPM are transcripts per million. We let denote the number of samples,                

denote the number of considered cell types, denote the cell type assignment for              

cell type and sample .  

Binary classification with logistic regression 

We use L2-penalized logistic regression for each binary classifier as implemented by scikit-learn             

(Pedregosa et al. 2011) using the LIBLINEAR solver ​(Fan et al. 2008)​. To speed up the training                 

of each binary classifier, we preprocessed the bulk RNA-seq training data using principal             

components analysis (PCA) as implemented in scikit-learn. Specifically for each cell type ,             

each classifier is trained by minimizing the following loss-function: 

 

where 

 

is the logistic function, are the model-coefficients for cell type , is the intercept for                 

cell type , controls the strength of the regularization, is the number of training samples,                 

is a per-sample weight for handling class-imbalance in cell type ’s model, and               

is the PCA loadings matrix. 

 

We also note that most training sets are highly unbalanced. We found that the models were                

better calibrated when the loss-function weighted each training sample such that the positive             

and negative samples contribute equally to the loss function (via the weights above) as               

evidenced by the improved F1-scores when using a threshold of 0.5 for making discrete yes-no               

cell type decisions (​Figure S13C​). We implemented this class-balancing by setting the            

class_weight​ parameter to ‘balanced’ in scikit-learn’s ​LogisticRegression​ class constructor. 

 

Isotonic regression correction 
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We train a binary classifier for each cell type to model using logistic               

regression and a one-versus-rest training strategy. As proposed by Obozinski ​et al. (2008),             

these probabilities are then reconciled with the ontology graph using isotonic regression.            

Specifically, we output the set of probabilities: 

 

subject to  

 and  

where as output by each classifier and is the set of             

parent cell types for cell type . CellO uses the quadprog Python package             

(​https://pypi.org/project/quadprog/​) for solving this quadratic optimization problem. 

 

Bayesian network correction 

A binary classifier is trained for each cell type and a one-versus-rest training strategy. The               

classifier outputs are then reconciled with the ontology graph using a Bayesian network as              

proposed by Lee et al. (2013). The true assignments for each cell type within a given sample,                 

denoted , are modelled as latent random variables, and the classifier outputs,            

denoted (signed distances to each decision boundary), are modelled as           

observed random variables in a Bayesian network. The final output probability for cell type is                

then the marginal probability 

 

More specifically, for a given cell type , we model the conditional distribution of the classifier’s                

output (distance to the decision boundary) conditional on its true label as a discrete                

random variable constructed as follows. We partition the training data for cell type into two                

folds ensuring that no study is split between folds while attempting to keep the sizes of the two                  

folds as similar as possible. We then train on one fold and compute the classifier scores from                 

the second fold (for each of the two folds). 

Using all of these scores, we then compute a histogram where the bin sizes are determined                

using a second 2-fold cross-validation scheme. Specifically, we then test a number of bin sizes               

by first estimating a histogram density function using data in one fold and then computing the                
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likelihood of the data in the second fold (performing this procedure for both folds). The               

histogram density function is given by 

 

where is the total number of data points, is the width of each bin, and is the                    

number of data points sharing the same bin as . We choose a bin size that maximizes the                  

mean of the two data log likelihoods computed on each fold. 

As described by Lee et al. (2013), the true cell type assignments factor according               

to the ontology graph: 

 

where  

  

are the assignments to the children cell types of cell type in the ontology. These conditional                 

distributions  enforce consistency with the ontology by defining 

 

if . Otherwise, 

  

The values are computed from counts in the training data. Specifically, the prior for each                

leaf-node cell type is simply the fraction of samples in the data set labelled as . For each                   

internal node , the prior is computed as the fraction of all samples labelled as , but not                  

labelled as any child of . A pseudocount of one was used in the calculation for all priors. Due                   

to the size of the ontology, we perform approximate inference using Gibbs sampling rather than               

exact inference using the Laurintzen algorithm as was performed by Lee et al. 
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To test the impact of the graph-structured prior on this algorithm, we also tested a naive Bayes                 

variant in which each cell type is predicted independently (i.e., without the graph-structured             

prior). We found a significant improvement in performance for the graph-structured BNC            

algorithm over the naive Bayes algorithm indicating that the graph structured prior is an              

important component of this algorithm (​Figure S14​). 

True Path Rule 

We train a binary classifier for each cell type to model using logistic               

regression and a one-versus-rest training strategy. As proposed by Notaro et al. (2017), this              

method involves two passes across the ontology: on a bottom-up pass, each cell type's output               

probability is averaged with the outputs of all child cell types classifiers for which the classifier                

makes a positive prediction according to a predefined threshold. More specifically, each cell             

type 's output probability is set to 

 

where  according to the classifier and  

  

is the set of children of cell type for which the classifier output a positive prediction according                  

to a predefined threshold . We used a threshold of . This bottom-up pass allows for                

sharing of information across the classifiers. In the top-down pass of the ontology, the output               

probabilities are set to ensure consistency with the ontology. This procedure works as follows:              

each node in the ontology is visited according to the topologically sorted order of nodes and for                 

a given visited cell type , its final probability is set to 

 

where  are the parent nodes of node  in the DAG. 

 

Cascaded logistic regression 

Classification is made in a top-down fashion starting from the root of the ontology downward as                

proposed by Obozinski et al. (2008). This is accomplished by training a logistic regression,              
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binary classifier (although any binary classifier that outputs a prediction probability can be used)              

for each cell type  to model the distribution  

  

where indicates whether the sample belongs to all of the parents of in the                

ontology. In order to model these distributions, each cell type's negative training examples             

consist of those samples that are labeled with all parent cell types, but not the target cell type.                  

Given these learned distributions, the probability that originates from cell type is computed               

via  

  

where  denotes the ancestors of cell type  in the ontology's DAG.  

 

One-nearest neighbors 

Given a query gene expression profile , we return all cell type labels belonging to the training                 

set expression profile 

 

where is the Pearson correlation of the expression values in and as               

implemented in Python’s SciPy package  ​(Virtanen et al. 2020)​.  

 

Quantification and statistical analysis 

Partitioning bulk RNA-seq data into training and test sets 

In order to find the optimal parameters and configurations for CellO, we partitioned the bulk               

RNA-seq training dataset into a pre-training set and validation set (​Figure 2A​). When creating              

this partition, we sought to satisfy a number of criteria that would enable unbiased estimation of                

performance across cell types. First, we required that no study be split between the pre-training               

and validation sets in order to ensure that a model is never tested on data from a study on                   

which it was trained. This mitigates the possibility that the algorithm will provide an overly               

optimistic estimate of the generalization error when run on the validation set. Second, we sought               

an approximately 80/20 split of the data between the pre-training and validation sets. Third and               

finally, we sought for all cell types to be represented in both the pre-training and validation sets.                 

We framed this partitioning task as an optimization problem where our four criteria were              

encoded in an objective function. Minimizing this objective function entails creating a partition             

https://www.codecogs.com/eqnedit.php?latex=j%20%5Cin%20%5Bm%5D#0
https://www.codecogs.com/eqnedit.php?latex=q_j%20%3A%3D%20p(y_j%20%3D%201%20%5Cmid%20%5Cpi_j%3D1%2C%20%5Cboldsymbol%7Bx%7D)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cpi_j%20%5Cin%20%5C%7B0%2C%201%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=%5Cboldsymbol%7Bx%7D#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=p(y_j%20%3D%201%20%5Cmid%20%5Cboldsymbol%7Bx%7D)%20%3D%20q_j%20%5Cprod_%7Bk%20%5Cin%20A_j%7D%20q_k#0
https://www.codecogs.com/eqnedit.php?latex=A_j#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=%5Cboldsymbol%7Bx%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7Barg%20min%7D_%7B%5Cboldsymbol%7Bx%7D%27%20%5Cin%20%5Cboldsymbol%7BX%7D%7D%20%5C%201%20-%20%5Ctext%7BCorr%7D(%5Cboldsymbol%7Bx%7D%2C%20%5Cboldsymbol%7Bx%7D%27)#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BCorr%7D(%5Cboldsymbol%7Bx%7D%2C%5Cboldsymbol%7Bx%7D%27)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cboldsymbol%7Bx%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cboldsymbol%7Bx%7D%27#0
https://paperpile.com/c/d6I1q8/8kGLN


 
that most closely meets the aforementioned four criteria. To optimize the objective function, we              

performed a simple hill-climbing procedure where we moved a study’s data from the validation              

set to the pre-training set if such a move resulted in a partition that improved the objective                 

function. 

Parameter tuning 

To choose the optimal number of principal components, we evaluated various numbers of             

principal components by training the collection of one-vs.-rest classifiers on the bulk RNA-seq             

pre-training set and evaluating on the bulk RNA-seq validation set. We found that using 3,000               

principal components performed equally well to using the raw gene expression values as             

features. Further, we found performance degraded as the number of principal components            

decreased (​Figure S13A​). We then performed a parameter sweep of penalty-weight parameters            

(i.e. regularization-strength parameters) for IR and CLR and chose the values that maximized             

the median average precisions for each method (​Figure S13D​). 

 

Model calibration 

We found that for many cell types, there were relatively few studies in the training set for which                  

samples of these cell types originated and thus, we found that the models tended to overfit to                 

the training set leading to poorly calibrated models. This was evidenced by the fact that the                

average-precision scores were high across most cell types; however, the F1-scores were much             

lower when using a default threshold of 0.5 for making binary cell type decisions (​Figure S13D​).                

The high average precision scores indicate that the positive and negative examples of each cell               

type are well separated in the ranking of samples when ranked according to the classifier output                

probability for the given cell type. However, the poor F1-scores indicate that the default              

threshold of 0.5 is non-optimal for separation.  

To address this issue, we used a data-driven approach to find empirical thresholds according to               

a leave-study-out cross-validation experiment. Specifically, we performed leave-study-out        

cross-validation on the pre-training set of bulk RNA-seq samples and used these results to              

empirically choose a threshold for each cell type such that if a given threshold less than 0.5 led                  

to a higher F1-score than the default threshold of 0.5, we select this empirical threshold. When                

applying these data-driven thresholds to the validation set, we observed a significant increase in              

the F1-scores across cell types under the independent one-vs.-rest classifiers approach (​Figure            
S13B​). Thus, when training the final CellO models (both CLR and IR), we performed this same                

cross-validation procedure on the entire bulk RNA-seq training set to select data-driven            



 
thresholds. 

We note that even with these selected thresholds, CellO often output more than one specific cell                

type for a given sample (e.g. both natural killer cell and T cell), which may confuse a user of the                    

tool. This phenomenon is a consequence of both mis-calibrated models (despite the            

data-driven thresholding procedure) and because CellO performs multi-label hierarchical         

classification. To address this issue, whenever CellO outputs more than one specific cell type,              

we select only the cell type with highest output probability along with all ancestor cell types. All                 

F1-scores reported in the main text followed from this correction procedure and thus, are an apt                

measure of the practical utility of CellO on real data (​Figure 2B​).  

Model interpretation 

We note that although the logistic regression model’s coefficients (where denotes             

the index for a given cell type) weight the principal components rather than genes, each                

gene’s contribution to the model’s decision can be recovered by 

 

where is the PCA loading matrix and describes the contribution of gene to                

the model’s decision. The full set of these vectors over all cell types can be explored within the                  

CellO Viewer web application. 

Evaluation metrics 

For a given input dataset, CellO generates two sets of outputs: binary yes-no decisions for each                

cell type assignment as well as probability scores that quantify how likely each cell should be                

assigned to any given cell type. Both of these outputs can be represented as matrices. More                

specifically, given an input dataset, where is the number of cells and is the                 

number of genes, the binary yes-no decisions can be represented as a matrix              

where is the number of cell types and if the classifier predicts cell to be of cell                    

type . The probability scores can also be represented as a matrix where                

denotes the classifier’s confidence that cell type should be labelled as cell type . Finally, the                 

true cell type assignments can also be represented as a matrix where              

if cell  is truly of cell type .  

We first define metrics for comparing to . For cell type , we define the number of true                   
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positives (TP),  false positives (FP), and false negatives (FN) as: 

 

 

 

We then evaluate the classifier’s performance on cell type using precision, recall, and              

F1-score, which are defined as 

 

 

 

We note that for a given cell, the ground-truth assignments for cell types that are more-specific                

than the cell’s most-specific ground-truth cell type are ambiguous since these samples could, in              

theory, truly be of a more specific cell type than they are labelled with (e.g., a cell labelled as a T                     

cell could be a CD8+ T cell even if it isn’t annotated as such). Thus, when computing the                  

aforementioned metrics for a given cell type within these single cell datasets, we exclude those               

cells that are labelled most-specifically as an ancestor of the cell type. For example, for metrics                

calculated for CD8+ T cells, we would exclude from the calculations those cells that are               

most-specifically labelled as T cells.  

Resource Availability 

Lead Contact 
Further information and requests for resources should be directed to and will be fulfilled by the                
Lead Contact, Colin Dewey (​colin.dewey@wisc.edu​). 

Data and Code Availability 
A Python package for running CellO can be found at ​https://github.com/deweylab/CellO​. The            
data used in this work can be found at ​http://deweylab.biostat.wisc.edu/cell_type_classification/​.          
The CellO Viewer can be accessed at ​https://uwgraphics.github.io/CellOViewer/​. The code          
implementing the CellO Viewer can be found at ​https://github.com/uwgraphics/CellOViewer​. All          
code for performing the experiments in this work can be found at            
https://github.com/deweylab/cell-type-classification-paper​. 
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Materials Availability Statement Examples 
This study did not generate new unique reagents. 
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Supplemental Figure 1. ​Distribution of edge inconsistencies. ​The cumulative distribution          
function over the difference in probability between the parent and child classifiers for all edges               
for which either the parent or child classifier output a probability greater than 0.01.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Supplemental Figure 2. ​Cluster assignments for single-cell datasets evaluated in this work.            
UMAP plots of the single-cell datasets examined this work where each cell is colored according               
to its CellO cluster assignment. These clusters were aggregated to compute a mean expression              
profile and on which CellO was run. Plots are displayed for (​A​) the ​Segerstolpe et al. (2016)                 
dataset of healthy pancreatic cells, (​B​) the ​La Manno et al. (2016) dataset of fetal neural cells,                 
and (​C​) the Zheng et al. (2017) dataset of PBMCs. 
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Supplemental Figure 3. ​PBMC F1-scores produced by existing methods. ​The subgraph           
spanning the PBMC’s from Zheng et al. (2017) where each node is colored according to the                
F1-scores produced by SingleR with the Blueprint+Encode reference (BE), SingleR with the            
Human Primary Cell Atlas reference (HPCA), SingleR with the Monaco et al. (2019) reference              
(M), and scMatch. 
 
 
 
 
 
 



 
 
 
 

 
Supplemental Figure 4. ​PBMC F1-scores produced by SingleR using CellO’s training set.            
(​A​) The subgraph spanning the non-droplet-based cells and (​B​) ​the subgraph spanning the             
PBMC’s from Zheng et al. (2017) where each node is colored according to the F1-scores               
produced by SingleR with CellO’s reference. 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

 
Supplemental Figure 5. Examination of CellO’s Output for Tumor LX682. UMAP plots of lung              
adenocarcinoma tumor LX682 from Laughney et al. colored by (top) CellO’s output using IR and               
a Leiden resolution parameter of 1.0 (middle) CellO’s output using IR and a Leiden resolution               
parameter of 8.0, and (bottom) the original cell type labels provided by the authors. We highlight                
three subpopulations of putative dendritic cells (top subpopulation), endothelial cells (middle           
subpopulation) and fibroblasts (bottom subpopulation). We verified these subpopulations using          



 
known marker genes for these cell types (top right). 
 

 
Supplemental Figure 6. Examination of CellO’s Output for Tumor LX679. UMAP plots of lung              
adenocarcinoma tumor LX679 from Laughney et al. colored by (top) CellO’s output using IR and               
a Leiden resolution parameter of 1.0 (middle) CellO’s output using IR and a Leiden resolution               
parameter of 8.0, and (bottom) the original cell type labels provided by the authors. We highlight                
the plasmacytoid dendritic cell population and verify its identity using known marker genes for              
these cell types (top right). 



 

 
Supplemental Figure 7. Examination of CellO’s Output for Tumor LX653. UMAP plots of lung              
adenocarcinoma tumor LX653 from Laughney et al. colored by (top) CellO’s output using IR and               
a Leiden resolution parameter of 1.0 (middle) CellO’s output using IR and a Leiden resolution               
parameter of 8.0, and (bottom) the original cell type labels provided by the authors.  



 

 
Supplemental Figure 8. Examination of CellO’s Output for Tumor LX661. UMAP plots of lung              
adenocarcinoma tumor LX661 from Laughney et al. colored by (top) CellO’s output using IR and               
a Leiden resolution parameter of 1.0 (middle) CellO’s output using IR and a Leiden resolution               
parameter of 8.0, and (bottom) the original cell type labels provided by the authors.  
 



 

 
Supplemental Figure 9. Examination of CellO’s Output for Tumor LX675. UMAP plots of lung              
adenocarcinoma tumor LX675 from Laughney et al. colored by (top) CellO’s output using IR and               
a Leiden resolution parameter of 1.0 (middle) CellO’s output using IR and a Leiden resolution               
parameter of 8.0, and (bottom) the original cell type labels provided by the authors.  
 
 
 



 

 
Supplemental Figure 10. Examination of CellO’s Output for Tumor LX676. UMAP plots of             
lung adenocarcinoma tumor LX676 from Laughney et al. colored by (top) CellO’s output using              
IR and a Leiden resolution parameter of 1.0 (middle) CellO’s output using IR and a Leiden                
resolution parameter of 8.0, and (bottom) the original cell type labels provided by the authors.  
 
 



 

 
Supplemental Figure 11. Examination of CellO’s Output for Tumor LX680. UMAP plots of             
lung adenocarcinoma tumor LX680 from Laughney et al. colored by (top) CellO’s output using              
IR and a Leiden resolution parameter of 1.0 (middle) CellO’s output using IR and a Leiden                
resolution parameter of 8.0, and (bottom) the original cell type labels provided by the authors.  
 



 

 
Supplemental Figure 12. Examination of CellO’s Output for Tumor LX684. UMAP plots of             
lung adenocarcinoma tumor LX684 from Laughney et al. colored by (top) CellO’s output using              
IR and a Leiden resolution parameter of 1.0 (middle) CellO’s output using IR and a Leiden                
resolution parameter of 8.0, and (bottom) the original cell type labels provided by the authors.  
 
 



 

 
 
Supplemental Figure 13. ​Parameter tuning. ​(​A​) Average precision scores across cell types in             
the bulk RNA-seq validation set produced by the independent one-vs.-rest classifiers on data             
preprocessed with various numbers of principal components. (​B​) F1-scores produced by the            
independent classifiers when using a threshold of 0.5 for making a binary yes-no decision for all                
cell types versus a custom threshold for each cell type as empirically determined via a               
leave-study-out cross-validation experiment on the pre-training set of bulk RNA-seq samples.           



 
(​C​) Average precision (left) and F1-scores (right) across cell types in the bulk RNA-seq              
validation set produced by the independent one-vs.-rest classifiers trained either with or without             
the class-balanced loss-function. (​D​) Average precision scores across cell types in the bulk             
RNA-seq validation set produced by the one-vs.-rest and CLR conditional classifiers when            
trained with various regularization strengths (i.e. penalties). These penalty values correspond to            
the inverse of the regularization strength and thus, smaller numbers indicate stronger            
regularization.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Supplemental Figure 14. Comparing Bayesian network correction with naive Bayes. ​A           
comparison between BNC and a naive Bayes variant of BNC that considers each cell type               
independent of the graph-dependencies between cell types. We compared these approaches in            
terms of both the distribution of average precisions across cell types (left) and joint              
precision-recall curves constructed by considering each cell-cell type pair as an independent            
prediction. 
 
 
 
 
 
 
 



 

 
Supplemental Figure 15. Effect of clustering parameter on performance. ​We clustered the            
Zheng et al. (2017) PBMC dataset using various resolution parameters for the Leiden             
community-detection algorithm and then computed the average-precision across all cell types           
produced by IR (left) and CLR (right) on the mean expression profiles for the clusters generated                
under each parameter. 
  
 
 



 

 
Supplemental Figure 16. ​Effect of number of training studies on calibration quality. We             
evaluated IR on the bulk RNA-seq validation set and for each cell type, we computed the                
F1-score (F1) using a decision-threshold of 0.5 and average precision (AP). We then plot the               
difference between F1 and AP against the logarithm of the number of studies in the bulk                
RNA-seq pre-training set that sequenced each cell type. A larger gap between F1 and AP (i.e.                
negative numbers with large magnitude) indicates poorer calibration. Error bands around the            
ordinary least-squares regression line indicate 0.95 confidence intervals estimated via          
bootstrapping. 


