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Abstract—Many applications in robotics require computing a
robot manipulator’s “proximity” to a collision state in a given
configuration. This collision proximity is commonly framed as
a summation over closest Euclidean distances between many
pairs of rigid shapes in a scene. Computing many such pairwise
distances is inefficient, while more efficient approximations of this
procedure, such as through supervised learning, lack accuracy
and robustness. In this work, we present an approach for
computing a collision proximity function for robot manipulators
that formalizes the trade-off between efficiency and accuracy and
provides an algorithm that gives control over it. Our algorithm,
called PROXIMA, works in one of two ways: (1) given a time
budget as input, the algorithm returns an as-accurate-as-possible
proximity approximation value in this time; or (2) given an
accuracy budget, the algorithm returns an as-fast-as-possible
proximity approximation value that is within the given accuracy
bounds. We show the robustness of our approach through
analytical investigation and simulation experiments on a wide set
of robot models ranging from 6 to 132 degrees of freedom. We
demonstrate that controlling the trade-off between efficiency and
accuracy in proximity computations via our approach can enable
safe and accurate real-time robot motion-optimization even on
high-dimensional robot models.

I. INTRODUCTION

In order to safely execute tasks, a robot manipulator must
exhibit motions that avoid or adapt to possible collisions
with itself, other robots, and static or dynamic obstacles
in its environment. Many robot motion generation strategies
involve defining a scalar function, c(Θ), that characterizes how
close a robot manipulator is to a collision state in a given
configuration, Θ. A common form of this function, proposed
by Schulman et al. [1], is some summation over distances
between pairs of rigid shapes in the scene (e.g., Equation 1).
This function, along with its gradient, is used in optimization
models to generate collision-free robot motions.

Computing the collision proximity function is often a
computational bottleneck because it requires expensive signed
distance checks between pairs of rigid shapes. Here, a signed
distance check involves computing the closest Euclidean dis-
tance between a pair of non-intersecting shapes or computing
the maximum penetration depth between two intersecting
shapes. Naı̈vely iterating through all pairs of shapes is pro-
hibitively expensive. To address this challenge, prior research
has proposed, at a high level, three classes of solutions: (1)
shape approximation approaches that replace the given set of
shapes with approximating shapes that afford more efficient
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Fig. 1. We present an approach for computing a collision proximity function
for robot manipulators that formalizes the trade-off between efficiency and
accuracy and provides an algorithm that gives control over it. (Top) Our
approach takes as input a set of shapes, robot model, and either a time or
accuracy budget. The algorithm outputs an approximate proximity value that
is either as-accurate-as-possible in the given time budget or as-fast-as-possible
within the given accuracy bounds. (Bottom) Our approach strategically culls
distance checks between any pairs of shapes whose pairwise distances can be
tightly bounded in the first step of our algorithm. Thus, our approach often
involves many fewer expensive distance checks between shapes compared to
naı̈ve iteration (left) and bounding volume hierarchies (middle).

signed distance checks at run-time, e.g., sets of spheres [2, 3];
(2) supervised-learning approaches that involve constructing
some approximation of c from a large labeled dataset that
will eliminate the need for any signed distance checks at
runtime [4, 5, 6, 7, 8, 9]; and (3) culling approaches that use
specialized data structures or geometric reasoning to ideally
eliminate many signed distance checks at run-time. This
approach can also utilize hierarchies of shape approximations,
e.g., bounding volume hierarchies (BVHs) [10, 11, 12].

The classes of approaches discussed above have contrasting
strengths and weaknesses. For instance, shape approximation
and supervised-learning approaches afford efficient estimates
of c; however, these approximations exhibit errors with respect
to the original function c that may be difficult to model,



bound, or control. This lack of control over accuracy and
robustness makes this strategy impractical for performance-
critical applications where collisions have a high cost such
as remote homecare, robot surgery, space robotics, or nuclear
materials handling. Conversely, culling methods often compute
exact outputs of c and, thus, guarantee accuracy; however, their
efficiency is not guaranteed and, in the worst case, |S|2

2 distance
checks (where S is the set of all shapes in the scene) may
be needed for just one computation of c. This lack of control
over efficiency makes this strategy impractical for time critical
applications, such as shared-control or telemanipulation.

In this work, we introduce an approach for computing
a collision proximity function for robot manipulators that
formalizes the trade-off between efficiency and accuracy and
provides control over it. Our algorithm, called PROXIMA,
works in one of two ways. First, given a time budget, i.e.,
an amount of time wherein a result should be returned, the
algorithm returns an as-accurate-as-possible approximation
value in this time. If the time budget is large enough, the
“approximation” here will be exact, i.e., ĉ = c. Second, given
an accuracy budget, i.e., a value ϵ such that the approximation
is within this distance of the ground truth (|c – ĉ| < ϵ), the
algorithm returns an as-fast-as-possible approximation value
that is within the accuracy bounds. Our algorithm also allows
control over the accuracy budget computation such that it can
always return a cautious, pessimistic approximation. Thus, if
desired, a stronger accuracy budget bound of c ≤ ĉ ≤ c+ϵ can
always be computed using our method to ensure the safety of
the robot or surrounding obstacles in downstream applications.
If the accuracy budget ϵ is zero, the “approximation” will be
exact, i.e., ĉ = c.

At a high level, PROXIMA operates in two phases: com-
puting an error-bounded estimate, and then revising that es-
timate until either a time limit is reached, or the bounds
on the estimate are sufficiently accurate. First, the algorithm
computes guaranteed upper and lower bounds on the signed
distances for all pairs of objects. These bounds are signif-
icantly less expensive to compute than ground truth signed
distance checks, allowing the computation of all pairs even for
hundreds of objects. The bounds also provide an estimate of
the signed distance, along with a bound on the amount of error
that the estimate may bring. Second, the algorithm replaces
the estimates of pairs that have high potential error with
the actual signed distance computations. These replacements
are processed to reduce the overall error until it either falls
within a required accuracy limit or fills the allotted time. By
prioritizing the pairs with largest errors, the algorithm uses its
time most effectively.

Through the steps above, our approach covers the strengths
of both exact and approximation approaches by allowing users
to dynamically determine how efficiency or accuracy should
be prioritized. Our algorithm does not require any learning
or pre-processing a priori, allows for dynamically changing
kinematic structures or environments, and does not require any
underlying shape properties such as convexity. Additionally,

our approach enables the computation of an approximate
gradient that can also accommodate time or accuracy budgets,
meaning the approach as a whole can be incorporated into
many non-linear optimization frameworks.

We show the robustness of our approach through analytical
investigation and thorough simulation experiments on a wide
set of robot models ranging from 6 to 132 DOF (§IV–V).
We demonstrate through experiments that PROXIMA is able to
compute proximity output values within these allotted time or
accuracy budgets. Our experiments show that our algorithm
computes results that are close approximations to the answers
provided by exact approaches, with computation times that are
competitive with learning and shape approximation methods.
Additionally, we demonstrate that controlling the trade-off
between efficiency and accuracy in proximity computations
via our approach can enable safe and accurate real-time robot
motion-optimization even on high-dimensional robot models.
We provide open-source code for an implementation of our
approach.1

II. RELATED WORKS

Our approach draws on many works in the areas of compu-
tational geometry, robot collision and proximity queries, robot
motion optimization, and learning-based proximity function
approximations. In this section, we highlight these works and
discuss how they relate to our current work.

A. Object Distance Queries

A fundamental problem in computational geometry is deter-
mining the distance between shapes. The seminal GJK method
developed by Gilbert, Johnson, and Keerthi finds the shortest
distance between pairs of convex shapes by using a support
function to iteratively converge on closest simplices [13].
Enhanced GJK methods also use edge information to speed up
this convergence process [14]. The GJK family of approaches
is still widely used, and is a common geometric primitive in
many robotics and graphics software libraries [12, 15, 16].

Many distance computation approaches leverage a strategy
called coherence, where the current geometric query tries to
utilize information from previous queries in order to speed
up computation. This strategy is particularly effective when
consecutive moments (“frames” in graphics or “updates” in
robotics) exhibit small, incremental changes. While GJK can
take advantage of coherence, e.g., initializing the algorithm
at the previously found solution, other intersection and prox-
imity query approaches more explicitly use this strategy.
For instance, the Lin-Canny closest features algorithm tracks
the closest combination of features between convex shapes
(vertices, edges, or faces) from moment to moment and
either quickly verifies that the previous closest points are still
accurate or updates these closest points as necessary [17].
Using coherence and convexity, this algorithm achieves near
constant time complexity in practice. The V-clip algorithm
improves upon the Lin-Canny algorithm in terms of numerical

1Optima Toolbox: https://github.com/djrakita/optima toolbox

https://github.com/djrakita/optima_toolbox


stability, comprehensibility, and robustness [18]. We note that
the coherence-based distance method proposed by Larsen et al.
[19] using swept sphere volumes would be a particularly useful
subroutine for our approach as the approximate distance af-
forded by the approach could be directly used in our accuracy
budget computation.

Our work differs from the approaches above as we are
not proposing a new way to compute a distance between a
pair of geometric shapes. Instead, the goal of our approach
is to efficiently and robustly bound and, when appropriate,
approximate the distances between many pairs of shapes to be
used in an aggregated scalar distance function for applications
in robotics. Our approach is complementary to the class of
approaches above and uses them as an important sub-routine
(e.g., our current implementation uses GJK for distance checks
between pairs of shapes). While our approach is heavily
inspired by the general strategy of coherence, it uses a new
class of coherence that is not tied to a global coordinate system
or time (explained in §IV).

B. Reducing Number of Signed Distance Checks

A common strategy when computing distances between
many pairs of shapes is trying to eliminate as many distance
checks at run-time as possible. For instance, a bounding
volume hierarchy (BVH) is a data structure that attempts to
reduce the number of distance checks between a set of shapes
by traversing trees of nested approximating geometric shapes.
Many BVH structures have been proposed and implemented
for graphics and robotics applications [10, 11, 12]. Updating
BVH data structures can be relatively expensive, especially
for a large number of objects, though this update can use
coherence to ease this issue [20, 21]. An alternative to a
hierarchical data structure is a signed distance field (SDF)
which discretizes a 3D environment and caches a distance
to a closest surface at each voxel in space [2, 3]. SDFs
allow for fast distance look-ups at run-time, though they are
computationally expensive to construct and, thus, do not easily
allow for dynamic updates in the environment making them
non-ideal for robotics applications in practice.

Our approach shares similar goals with BVHs in terms of
trying to cull as many distance checks as possible between
pairs of shapes in a scene. However, instead of culling based on
a pre-determined splitting strategy in the BVH tree and corre-
sponding layers of nested approximating geometric shapes, our
approach culls distance checks between non-salient pairs of
shapes whose pairwise distances can be tightly approximated
at the current proximity query between provable upper and
lower distance bounds (explained in §III and IV).

C. Applications of Proximity Functions in Robotics

Intersection and distance checking is often an important
sub-problem when generating robot motions. For instance,
sampling-based motion planners often require a collision-
checker to determine whether a C-space sample is feasible or
infeasible [22, 23, 24]. While our approach may have benefits

in motion planning frameworks to make the binary determina-
tion of whether a state is in collision or not, our approach is
more tailored for optimization approaches that need to reason
over the robot’s continuous proximity to a collision state and
the gradient of this proximity function. However, prior work
that utilizes robot proximity computations for motion planners
suggests interesting future work in this direction [25].

As mentioned above, our work is particularly designed
for proximity and gradient computations for optimization
frameworks. One such area where this is used is trajectory op-
timization. In prior work, trajectory optimization frameworks
have used SDFs to compute distances and gradients [2, 3].
Work by Schulman et al. [26] improved on the robustness and
generality of robot proximity checking and gradients.

Another recent area of attention in robot motion optimiza-
tion has been collision-free inverse kinematics solvers. These
approaches have one of two goals: (1) Optimize a sequence
of independent robot configurations as fast as possible (typ-
ically in real-time) based on some primary objective (e.g.,
end-effector pose matching) [4, 5, 9, 27]. This paradigm is
often called per-instant pose optimization; or (2) Optimize
a sequence of robot configurations in an off-line manner to
match a pre-determined series of objectives (e.g., a series of
end-effector pose goals) [28, 29, 30]. This paradigm is often
called pathwise inverse kinematics. In both cases, recent at-
tention has turned towards achieving primary objectives while
also maintaining other feasibility objectives and constraints
such as avoiding self-collisions, kinematic singularities, or
collisions with the environment. Because robot proximity
checking is computationally expensive, these approaches often
use supervised-learning approximations of proximity models
to ease the computational burden [4, 5, 29, 6, 7, 8, 9]. For
instance, Mirrazavi Salehian et al. [5] propose a support vector
machine (SVM) classifier that learns a self-collision boundary
for use in real-time motion optimization. Also, Kang et al.
[9] present a method that also includes environment collision
avoidance by using a collision-cost prediction network to
output a robot’s approximate proximity to obstacles given an
input occupancy grid.

Our approach is also amenable for use in optimization-
based IK solvers. Instead of using a supervised-learning-based
proximity model to maintain efficiency, our approach uses a
geometric approach that achieves a provably robust approxi-
mation through culling and bounded distance estimates. Our
approach also does not involve pre-processing, it is more
comprehensible and easier to prove robustness and accuracy
of the output, and can account for dynamically updating
kinematic structures or environments without retraining. We
compare against a state-of-the-art learning-based method in
our evaluation.

III. TECHNICAL OVERVIEW

In this section, we outline preliminary concepts and notation
before overviewing our approach.



Fig. 2. Signed distance between a pair of shapes if they are not intersecting
(left) or intersecting (right).

A. Geometric Preliminaries

Suppose we have a set of geometric shapes, S. An individual
shape in S will be denoted as aS , where the preceding
superscript “a” is some reference label. The signed distance
between a pair of shapes aS and bS will be denoted as
d(aS ,b S). If aS and bS are not intersecting, ac and bc will
denote the closest pair of points on aS and bS , respectively.
Conversely, if aS and bS are intersecting, ac and bc will denote
the closest pair of points on aS and bS , respectively, that are
both also contained in aS and bS . These concepts can be seen
illustrated in Figure 2. Here, d(aS ,b S) = ||ac–bc|| if the shapes
are not intersecting and d(aS ,b S) = –||ac –b c|| if the shapes
are intersecting. A general function we are investigating in this
work resembles the following:

c =
∑

{aS∈S,bS∈S | f1 ∧ f2 }
ℓ(d(aS ,b S))

f1 := active(aS , bS),

f2 := d(aS ,b S) < dmax (1)

Here, ℓ(.) is some loss function that will map its scalar
input to some output range (e.g., it is standard for small signed
distances to map to high values). The f logical rules specify
which pairs of shapes in the scene will be filtered from the
summation. For example, the active function indicates if
a pair of shapes should be considered based on some pre-set
rules (e.g., aS ̸= bS , etc.). The value dmax denotes some
cut-off such that any greater distance will not be considered
in the sum. In the following section, we adapt the abstract
formulation in Equation 1 to a robot manipulation setting.

B. Robotics Preliminaries

In our work, the set S consists of 3-dimensional shapes that
represent a robot’s links or obstacles in a robot’s environment.
The robot model and objects in the environment may change
poses over time, thus we will account for this possible motion
in our notation. Now, an individual shape in S will be denoted
as aSt, where the preceding superscript “a” is still some
reference label of a shape, and the subscript “t” is some time
label. A shape at time t, aSt, has a corresponding transform,
aTt ∈ SE(3). We denote a robot’s n-dimensional configuration
at time t as Θt. Using a robot’s forward kinematics model,

we can map Θt to a transform Tt for any shape that is rigidly
attached to a robot link. Note that the time parameter t on
the robot configuration and underlying scene shapes does not
necessarily imply smooth, continuous motion, it is solely a
notational mechanism that allows the robot’s links or objects
in the environment to change poses from moment to moment.
Using this notation, we update c in Equation 1 as follows:

c(Θt, t) =
∑

{aSt∈S,bSt∈S | f1 ∧ f2 ∧ f3}
ℓ(

d(aSt,b St)
a(aS ,b S)

)

f1 := active(aSt, bSt),

f2 := d(aSt,b St) < dmax

f3 :=
d(aSt,b St)
a(aS ,b S)

< amax (2)

Here, a(aS ,b S) denotes the average signed distance between
shapes aS and bS . For example, if shapes represent robot
links, average signed distances between all pairs of links
could be computed off-line by random sampling many robot
configurations. If an average signed distance between shapes
is unknowable a priori, then a(aS ,b S) = 1 by default. The
amax parameter is conceptually similar to dmax; it serves
as a threshold value such that shape pairs can be excluded
or included in the proximity function summation based on
how a shape pair’s calculated signed distance at any moment
compares to the shape pair’s average signed distance.

The inclusion of a(aS ,b S) and amax in Equation 2 is useful
in a robotics context as it can correct for links that happen
to be safely close together. For example, the distance between
adjacent fingers on a dexterous hand may be naturally small,
but concern should only be raised in a collision proximity
model when this distance drops some ratio below their ex-
pected, average distance. The active function in a robotics
context may filter shapes based on pre-computed criteria (e.g.,
shapes that represent links on a robot may be considered
inactive pairs if they are deemed never in collision or always
in contact) or by object type (e.g., distances should not be
checked between two shapes representing static or dynamic
obstacles in the environment).

At a high level, the c function in Equation 2 is similar to
previously proposed proximity functions for robot manipula-
tors [1]. The addition of the average distance between shapes
is new and may help with stability in some cases, though this
technique could be easily incorporated into prior frameworks.
The novelty of our work relates to our procedure for computing
an approximation of c in Equation 2 with time or accuracy
guarantees based on user-defined budgets.

C. PROXIMA Overview
Our proposed algorithm involves six steps. Technical details

and analyses regarding these steps can be found in §IV. We
assume these steps begin with all pairs of shapes having a
cached signed distance computed at some prior time. Thus,
on the initial pass through these steps, ground truth signed
distances must first be computed between all pairs of shapes.



1) Guaranteed upper and lower bounds on signed distance
are computed between each active pair of shapes in
the scene. In this work, these bounds are computed
by assessing how relative transforms between shapes
change over time, a novel technique we call Pairwise
Relative Spatial Coherence;

2) Any pairs of shapes whose lower signed distance bound
is greater than some cutoff (e.g., f2 or f3 in Equation 2)
are culled. Shape pairs remaining at this stage will be
referred to as summation eligible pairs.

3) The upper and lower bounds computed in Step 1 are
linearly interpolated based on a given parameter to create
an estimated signed distance for each summation eligible
shape pair;

4) The maximum loss function error that could possibly be
induced by the estimated signed distance is calculated
for each summation eligible shape pair;

5) All summation eligible shape pairs are sorted by their
respective maximum possible loss function errors from
highest to lowest;

6) Ground truth signed distance checks are processed in
this sorted order until either time is up (in the case of a
time budget) or until the maximum possible summation
of remaining errors in the sorted list is less than a given
ϵ (in the case of an accuracy budget)

IV. TECHNICAL DETAILS AND ANALYSIS

In this section, we present additional mathematical and
conceptual details on the steps above in §III-C and provide
proofs for any guarantees.

A. Distance Bounds

A key aspect of our approach is computing guaranteed
upper and lower bounds on signed distance between a pair
of shapes without invoking a more expensive ground truth
signed distance check. Our algorithm can accommodate any
subroutine for computing these bounds; however, the approach
as a whole will work best if these bounds are highly efficient
to compute while still being reasonably tight. To achieve these
goals, we developed a new technique that computes bounds by
assessing how relative transforms between shapes change over
time, a strategy we call Pairwise Relative Spatial Coherence.

We introduce the central strategy of Pairwise Relative Spa-
tial Coherence using two arbitrary shapes, aS and bS . Suppose
a ground truth signed distance check was last performed on
aS and bS at a time point j. At this time, the approach
has already cached the shapes’ SE(3) transforms, aTj and
bTj, closest pair of points, acj and bcj, and signed distance,
d(aSj,b Sj) = ±||acj –b cj|| (negative value denoting penetration
depth if shapes are intersecting).

Now, suppose we are assessing the distance between aS and
bS at the “current” time, k. Our key observation is if the rel-
ative transform between aTk and bTk is similar to the relative
transform between aTj and bTj, then d(aSk,b Sk) ≈ d(aSj,b Sj)
(we formally define similar relative transforms below). Note
that this effect holds even if aTk is far from aTj and bTk is far

from bTj (i.e., the shapes have both moved far in global space)
or if k is much larger than j (i.e., the proximity queries are
far apart in time). We will leverage this general observation
in order to bound the current distance, d(aSk,b Sk).

The description above relies on the notion of “similar
relative transforms”. We will define relative transforms in
this work with respect to transforms’ translation and rotation
components. Here, the translation component of an SE(3)
transform aTt will be denoted as att ∈R3, and its rotation
component will be denoted as aRt. The rotation component
is commonly either a rotation matrix R ∈SO(3) or a unit
quaternion R ∈S3. The math in this section will work with
either choice of rotation representation. Between a time j and
k, shapes aS and bS will exhibit the following relative change
in translation, ∆m:

Definition IV.1 (Relative Change in Translation).

∆m = | ||atj –b tj|| – ||atk –b tk|| |

Between a time j and k, shapes aS and bS will exhibit the
following relative change in rotation, ∆r:

Definition IV.2 (Relative Change in Rotation).

∆r = angle(disp(disp(aRj,b Rj),disp(aRk,b Rk)))

Here, the disp function is the displacement function be-
tween rotations [31, 32], and the angle function specifies the
angle in radians that a given rotation exhibits around its axis
of rotation. For convenience, we provide disp and angle
for unit quaternions and rotation matrices in Appendix A.

Using these definitions, if ∆m = 0 and ∆r = 0, then
d(aSk,b Sk) = d(aSj,b Sj) for rigid shapes, i.e., if the relative
translation and rotation between shapes aS and bS is equal
between times j and k, then their closest points must be
unchanged. The more interesting challenge in this work is
reasoning about d(aSk,b Sk) if ∆m and ∆r are non-zero.
The following lemmas and definitions utilize these notions of
relative transforms in order to prove a lower distance bound,
l(aSk,b Sk), and upper distance bound, u(aSk,b Sk), between
shapes aSk and bSk in Theorems IV.1 and IV.2, respectively.

Lemma IV.1. If ∆r = 0,∆m > 0, i.e., there is only relative
translation change between aS and bS from times j and k
without any relative orientation change, then d(aSk,b Sk) ≥
d(aSj,b Sj) – ∆m.

Proof: In Appendix B-A.

Definition IV.3 (Translation of a point induced by rotation).
By the law of cosines, the translation distance of a point p on
a rigid shape that is distance h from its local origin point o
induced by rotation θ is

Υ(h, θ) =
√

2h2(1 – cos(θ)) .

Lemma IV.2. If ∆m = 0,∆r > 0, i.e., there is only relative
orientation change between aS and bS between times j and
k without any relative translation change, then d(aSk,b Sk) ≥



d(aSj,b Sj) – Υ(max(af,b f),∆r). Here, f refers to the maximal
distance between any point on shape S and the shape’s origin.

Proof: In Appendix B-B.

Theorem IV.1 (Lower Signed Distance Bound).

l(aSk,b Sk) = d(aSj,b Sj) – ∆m – Υ(max(af,b f),∆r)

Proof: This result assumes the maximal change in dis-
tance due to both relative translation and orientation offsets
from both Lemma IV.1 and Lemma IV.2.

Theorem IV.2 (Upper Signed Distance Bound).

u(aSk,b Sk) = ||(aRk(aR–1
j (acj –a tj)) +a tk)–

(bRk(bR–1
j (bcj –b tj)) +b tk)||

Proof: This equation transforms the closest points at time
j, acj and bcj, to their new positions at time k and calculates
their updated distance. Because this distance is exact for these
two points, we know the ground truth distance between the
two shapes cannot possibly be greater than this distance.

B. Estimated Distance

An estimated distance for each summation eligible pair of
shapes at a “current” time point k, denoted as d̂(aSk,b Sk),
is computed by linearly interpolating between the upper and
lower distance bounds specified in Theorems IV.1 and IV.2:

Definition IV.4 (Estimated Distance).

d̂(aSk,b Sk) = (1 – r) ∗ l(aSk,b Sk) + r ∗ u(aSk,b Sk),
r ∈ [0, 1]

Here, r is a scalar value. Any r value between 0 and 1 is a
valid selection as this will guarantee that the estimated signed
distance via interpolation is within the bounds. A value of
r = 0 on all signed distance approximations will ensure that
the proximity approximation output is a cautious, pessimistic
estimate, i.e., c ≤ ĉ. Further, when used in an accuracy
budgeted proximity computation, a value of r = 0 on all signed
distance approximations will afford a strong guarantee that
c ≤ ĉ ≤ c + ϵ where ϵ is the given accuracy budget. Any
other value of r ∈ (0, 1] in an accuracy budgeted proximity
computation will afford the weaker guarantee that |c – ĉ| < ϵ.
By default, the value r = 0 should be used in our algorithm as
this will ensure that safety is enforced by any algorithm that
uses our approach as a subroutine. Exceptions to this guideline
are discussed below (e.g., §IV-E). While a complete analysis
of this r parameter is outside the scope of our current work,
we empirically demonstrate some effects of this parameter in
our simulation experiments below. Future extensions of our
work could comprehensively characterize the effects of this
parameter and, in turn, make informed, automatic selections
of r per query that are better able to approximate the ground
truth signed distance value between pairs of geometric shapes.

C. Maximum Loss Function Error

The estimated distance above is used to calculate a maxi-
mum possible loss function error associated with each sum-
mation eligible shape pair. Here, the loss function refers to ℓ(.)
in Equation 2. This error, which we will denote as ε(aSk,b Sk),
is calculated by comparing the loss function output at the
estimated distance to loss function outputs at the bounds.
We specify this error in Theorem IV.3 using the following
definition.

Definition IV.5 (Loss with Cutoff). Given a pair of shapes aS
and bS , their loss with cutoff, which we will refer to as ℓc, is a
modified, piecewise version of the loss function from Equation
2 that returns zero for any values that are either larger than
dmax or larger than amax when divided by the shapes’ average
distance:

ℓc(x) ={
0, if x ≥ dmax ∨ x

a(aS,bS) ≥ amax

ℓ( x
a(aS,bS) ), otherwise

This loss with cutoff function mathematically represents the
f2 and f3 filter conditions in Equation 2, making it easier
to account for corner cases where l(aSk,b Sk) < dmax but
u(aSk,b Sk) ≥ dmax or l(aSk,bSk)

a(aS,bS) < amax but u(aSk,bSk)
a(aS,bS) ≥ amax

in Theorem IV.3.

Theorem IV.3 (Maximum Loss Function Error). If the scalar
loss function ℓ(.) is monotonically non-increasing and has a
range of R≥0 (and, by extension, same applies for ℓc(.)), then
the maximum loss function error given an estimated distance
d̂(aSk,b Sk) and bounds l(aSk,b Sk) and u(aSk,b Sk) will be:

ε(aSk,b Sk) = max( [ℓc(l(aSk,b Sk)) – ℓc(d̂(aSk,b Sk))],

[ℓc(d̂(aSk,b Sk)) – ℓc(u(aSk,b Sk))] ) .

Proof: In Appendix B-C

D. Budgeted Computations

All summation eligible shape pairs are sorted by their
maximum possible loss function errors in highest to lowest
order. Ground truth signed distance checks are then processed
in this sorted order until either (1) a time limit is up in the
case of a given time budget; or (2) the sum of the remaining
maximum possible loss function errors is less than ϵ in the case
of a given accuracy budget. Processing pairs of shapes in this
order affords two useful qualities: (1) Subject to the given loss
function errors ε(aSk,b Sk) for all summation eligible shape
pairs at time k, the proposed algorithm provides an as-accurate-
as-possible approximation of c in less than T +ξ time, where T
is a given time budget and ξ is a small time error to account
for residual computation; and (2) Subject to the given loss
function errors ε(aSk,b Sk) for all summation eligible shape
pairs at time k, the proposed algorithm provides an as-fast-
as-possible approximation of c such that |c – ĉ| < ϵ for some



given accuracy budget ϵ. Further, if a value of r = 0 is used
in the Estimated Distance step of our algorithm (§IV-B), the
inequality above becomes the stronger guarantee c ≤ ĉ ≤ c+ϵ.

E. Gradient Calculation

In this section, we specify how to compute an approximate
gradient of Equation 2, i.e., ∂̂c

∂Θt
, using either time or accuracy

budgets. Our approach modifies the standard finite difference
method as it allows for comprehensible, accurate, and easy
to analyze results. As a quick review, finite differencing to
compute a gradient of some function, c, involves the following
steps: (1) Call c at the given input variable at time k, in our
case, Θk. We will refer to the output value of this function call
as x0; (2) Slightly perturb the i-th element of the input variable
vector for a given i by adding a small number υ. In our case,
we will call this perturbed vector Θ̃ki; (3) Call the original
function at the perturbed input Θ̃ki and get an output value x̃i.
The i-th element of the output gradient will be approximately
(–x0 + x̃i)/υ; and (4) Repeat Steps 2 and 3 for each input vector
element i ∈ {1, ..., n}. We will refer to one pass through Steps
2 and 3 a finite difference pass.

Our PROXIMA gradient modifies the process above in order
to account for a given time budget or accuracy budget. In the
case of a time budget, the gradient takes a time parameter
T0 as an allotted computation time for the initial function
approximation (x0) and a time parameter T as an allotted
computation time for computing the gradient with respect to
x0. In the case of an accuracy budget, the gradient takes a value
ϵ0 as an allowable error on the initial function approximation
(x0), and a value ϵ as the total allowable L∞-norm error on
the approximated gradient with respect to x0.

The four finite differencing steps above are adapted in the
following ways: (1) Call the PROXIMA collision proximity
function ĉ at time k, i.e., Θk, using either a time budget of T0 or
an accuracy budget of ϵ0. A linear interpolation value of r = 1
must be used for this step in order to keep it consistent with
the r value in Step 3 (specified below); (2) Perturb the input
variable using the same Step 2 specified above; (3) Call the
PROXIMA collision proximity function at the perturbed input
Θ̃ki using either a time budget of T /n or an accuracy budget of
ϵ. We will consider each pass through this step as a new sub-
time k′ such that any distance checks taken at earlier parts of
the same gradient calculation within the larger scope of “time”
k can be used for subsequent distance bounds computations.
It is important to use a linear interpolation value of r = 1
for estimated distances for each pass through Step 3 here.
Because shape transforms are being perturbed a minuscule
amount at each pass, the upper bound will be a much more
accurate estimation of the updated function output than the
lower bound. Also, if an appropriately small υ value is used, it
is reasonable to assume that the set of summation eligible pairs
will remain unchanged throughout this gradient computation.
Thus, this set of shapes can be saved at the computation of x0
for quick recall at each pass through this step; and (4) Repeat
Steps 2 and 3 for each input vector element i ∈ {1, ..., n}.

V. EVALUATION

In this section, we overview several simulation experiments
designed to demonstrate the robustness of our approach.

A. Implementation Details

Our prototype PROXIMA implementation is implemented in
the Rust programming language. All distance queries are cal-
culated using the ncollide Rust library. Using the same col-
lision library throughout the evaluation ensures that conditions
are not getting an unintended benefit with respect to each other
due to faster underlying distance query implementations. Our
prototype system uses the NLopt library, specifically using
the SLSQP algorithm option, for all non-linear optimization
routines. Experiments were run on a Lenovo Legion laptop
with an i7-9750H processor and 32GB RAM.

In our prototype system, we select a piecewise Gaussian
and linear function for the loss ℓ in Equation 2 as it is
monotonically non-increasing and elicits smooth output values
and gradients in practice:

ℓ(x) :=

{
exp( –x2

2c2 ), c = 0.2 ∗ amax, if x > 0
–x + 1, if x ≤ 0

However, any reasonable monotonically non-increasing loss
function is compatible with our approach. In all experiments,
we use cutoff values of dmax = 0.3 meters and amax = 0.5 in
Equation 2, and all robot links are represented as best-fitting
convex hulls.

B. Experimental Benchmark 1: C-Space Random Walks

Our first experimental benchmark is designed for Experi-
ment 1 below. This benchmark involves taking many random
walks in configuration space on numerous simulated robot
models and assessing proximity metrics at each query. Specif-
ically, Benchmark 1 involves the following steps: (1) Sample
a collision-free robot configuration and set it as the robot’s
“current” configuration, qcurr; (2) Sample a random direction
to move in the robot’s C-space by sampling n separate angle
offset values (n being the number of robot DOF) from a
Normal distribution for all i DOF ∈ {1, ...n}:

qcurr[i] = qcurr[i] + z

z ∼ N(0,σ2) (3)

Here, σ is the standard deviation of the normal distribution.
Robot joint position limits are ignored at this step to allow un-
biased steps through C-space; (3) Repeat Step 2 one thousand
times and log any pertinent metrics at each configuration; (4)
Repeat Steps 1–3 one hundred times; (5) Repeat Steps 1–4 for
each experimental condition. All experimental conditions use
the same random walks to mitigate unintended bias; and (6)
Repeat Steps 1–5 for each robot model.

Experimental Benchmark 1 includes eleven simulated robot
models in Step 6. These robot models were selected to
span a diversity of kinematic structures and number of DOF.
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Fig. 3. Results for Experiment 1. (Top) Results that average over all robot models. Here, M denotes mean and SD denotes standard deviation. (Bottom)
Tukey boxplots that show time and accuracy metric results for the UR5 robot. There are 100,000 data points in each box plot. Outliers (dots above or below
plot whiskers) represent < 1% of all data points per condition. The UR5 robot is an easy test case due to its relatively low dimensionality (6 DOF) and small
number of links (7). Thus, the times reflected here are lower than average. The results here indicate that the 150, 100, and 50 microsecond time budgets
are always met (middle, left). The accuracy budgeted computation times are below 50 microseconds on average, but occasionally need similar time to the
non-approximating conditions to meet their respective accuracy budgets (middle, middle). On average, time results from our approach are comparable to the
Neural Net condition with much less error.

These robots are (1) Universal Robots UR5 (6 DOF)2; (2)
Rethink Robotics Sawyer (8 DOF, including screen)3; (3)
Franka Emika Panda (9 DOF, including gripper)4; (4) Kinova
Jaco (10 DOF, including gripper)5; (5) Fetch Robotics Fetch
(12 DOF, including head and gripper)6; (6) ABB Yumi (14
DOF)7; (7) PR2 (26 DOF, including head and grippers);
(8) A Shadowhand gripper8 on a Kuka IIWA (31 DOF,
including all fingers)9; (8) NASA Valkyrie robot (64 DOF,

2https://www.universal-robots.com/products/ur5-robot/
3https://www.rethinkrobotics.com/
4https://www.franka.de/
5https://www.kinovarobotics.com/
6https://fetchrobotics.com/
7https://new.abb.com
8https://www.shadowrobot.com/dexterous-hand-series/
9https://www.kuka.com/en-us

including floating base and all fingers)10; (10) DRC Hubo+ (66
DOF, including floating base and grippers)11; and (11) NASA
Robonaut2 (80 DOF, including floating base, all fingers, and
leg grippers)12.

C. Experiment 1: Comparing Proximity Model Approaches

In Experiment 1, we compare how efficiently and accurately
various approaches compute (or approximate) Equation 2
through Experimental Benchmark 1. We compare five baseline
conditions with several PROXIMA conditions. Baseline condi-
tions are (1) Spheres, a shape approximation approach that
represents each robot link as a union of spheres. This union
of spheres is calculated by decomposing the link triangle mesh

10https://www.nasa.gov/
11http://www.rainbow-robotics.com
12https://robonaut.jsc.nasa.gov/R2/

https://www.universal-robots.com/products/ur5-robot/
https://www.rethinkrobotics.com/
https://www.franka.de/
https://www.kinovarobotics.com/
https://fetchrobotics.com/
https://new.abb.com/products/robotics/collaborative-robots/irb-14000-yumi
https://www.shadowrobot.com/dexterous-hand-series/
https://www.kuka.com/en-us
https://www.nasa.gov/sites/default/files/atoms/files/r5_fact_sheet.pdf
http://www.rainbow-robotics.com
https://robonaut.jsc.nasa.gov/R2/


shapes into convex sub-components and wrapping each in a
best fitting sphere; (2) Neural Net, which attempts to learn an
approximation of Equation 2 using a neural network approach
proposed in prior work [4]. This approach trains a multi-layer
perceptron per robot, each using one million labeled input
and output pairs. Because input and output pairs can only be
feasibly collected for learning self-collision proximity outputs,
we only consider robot models in empty environments when
comparing with this approach; (3) Sphere BVH, which is a
Bounding Volume Hierarchy approach where the hierarchical
layers are approximating sphere shapes. This approach is
designed to reduce the number of ground truth signed distance
checks when computing Equation 2. The ncollide library
implementation of a Bounding Volume Hierarchy was used
for this condition, which follows the standard BVH principles
specified in the work by Pan et al. [12]; (4) AABB BVH, which
is also a Bounding Volume Hierarchy approach, but uses axis-
aligned bounding boxes (AABBs) on each layer instead of
spheres; and (5) Ground Truth, which computes Equation 2
by naı̈vely iterating through all pairs of shapes in the scene.

The baselines above are compared with twelve PROXIMA
conditions, six time-budgeted variants and six accuracy bud-
geted variants. The time budgeted variants use maximum time
values of 150, 100, or 50 microseconds. Each time budget
was assessed using an r parameter value of 0.0 and 1.0 to see
if the output approximation will indeed induce values such
that c ≤ ĉ in the case of r = 0 and c ≥ ĉ in the case of r
= 1. The accuracy budgeted variants use ϵ values of 0.001,
0.1, and 0.5. Each, accuracy budget was also assessed using r
parameter values of 0 and 1.

Experiment 1 uses a random walk standard deviation σ =
0.005 in Equation 3. Recorded metrics for Experiment 1 are
time per proximity query (in seconds) and the average differ-
ence between the output of a given approach from the ground
truth output: |ĉ–c| (if a condition is not an approximation, this
will be zero). These metrics are averaged across all robots in
this experiment.

1) Experiment 1 Results: Results from Experiment 1 can
be seen in Figure 3. Figure 3 top displays the average results
over all evaluated robot models, Figure 3 bottom more clearly
displays just results for the 6DOF UR5 robot using box and
whisker plots. First, we note that all PROXIMA conditions
achieve their respective time or accuracy budgets. This can
be clearly seen in Figure 3 (middle), where the times have
hard cutoffs at 150, 100, and 50 microseconds and Figure 3
(bottom) where the accuracy values have hard accuracy cutoffs
at 0.001, 0.1, and 0.5. We also see that the r value works
exactly as intended: a value of r = 0 will result in output
approximations such that c ≤ ĉ and a value of r = 1 will
result in output approximations such that c ≥ ĉ.

We also see that all PROXIMA conditions perform favorably
compared to the baseline conditions. For example, Spheres
and Neural Net have significantly higher errors than all other
conditions, even compared to the PROXIMA conditions that run
faster on average (e.g., the variants with time budgets of 50
microseconds). This indicates that PROXIMA is wisely spend-

ing its given time budget, computing accurate-as-possible
solutions even in short periods of time. Also, all PROXIMA
conditions are significantly faster on average than Sphere BVH,
AABB BVH, and Ground Truth, even when PROXIMA is given
small accuracy budgets (e.g., ϵ = 0.001 or ϵ = 0.1). This
reflects the fact that PROXIMA is achieving its given accuracy
budget as-fast-as-possible and stopping immediately after it
guarantees that this target range has been met.

D. Experimental Benchmark 2: End-effector Curve Following

Our second experimental benchmark is designed for Ex-
periment 2 below. This benchmark involves using various
proximity function approaches for use in a robot motion opti-
mization model. Specifically, this model is an optimization-
based generalized inverse kinematics formulation based on
prior work [4]. Our objectives and constraints in this work
are taken directly from the proposed method by Rakita et al.
[4], only switching out the self-collision avoidance objective
for our various experimental conditions.

Benchmark 2 involves the following steps: (1) A cubic
Bezier curve is procedurally generated by uniformly sampling
spline knot points from a 1 meter × 1 meter × 1 meter
domain in 3-dimensional space. These curves are arclength
parameterized and broken up into 1,000 equally spaced points;
(2) The cubic Bezier curve is lined up with a simulated robot
model’s end-effector such that the start of the curve matches
the robot’s end-effector in its given start configuration. If
the robot model has more than one end-effector, Step 1 will
involve generating a Bezier curve for each end-effector, and
each is lined up accordingly in Step 2. (3) The optimization-
based IK model is invoked 1,000 times. Each solve in the
sequence updates its end-effector position-matching objective
to be the given Bezier curve point in its respective sequence.
The optimization model also includes a term that encourages
the robot model to maintain the same end-effector orientation
throughout the motion. Thus, the output of Step 3 will result
in 1,000 individually optimized robot configurations that,
in sequence, exhibit the robot tracing the Bezier curve (or
curves) with its end-effector(s) while maintaining the same
end-effector orientation as best as possible. The weighted sum
objective model in the optimization model includes c or ĉ as
a term, thus the optimization will try to steer around self-
collisions, subject to its given collision proximity model; (4)
Steps 1–3 are repeated 50 times; (5) Steps 1–4 are repeated for
each condition proximity model condition; (6) Steps 1–5 are
repeated for two robot models: a 6 DOF UR5 and two 66 DOF
Hubo robots standing side-by-side, resulting in a 132 DOF
system overall. These robot models were selected as they are
vastly different in structure, complexity, size, number of limbs,
and number of DOF, so results should characterize proximity
conditions over these broad differences. Example outputs of
this procedure can be seen in Figure 4.

E. Experiment 2: Optimization-based Inverse Kinematics

In Experiment 2, we compare how various proximity mod-
els work as a collision avoidance objective in Experimental
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Fig. 4. Example motion outputs from the Bezier Curve Following procedure
in Experimental Benchmark 2 on a UR5 and Hubo robot.

Benchmark 2. This experiment includes the 17 conditions
from Experiment 1. In addition to these conditions, we add
a condition where no self-collision avoidance term is included
in the optimization objective function (referred to as None) as
well as a condition that implements the collision avoidance and
gradient procedures proposed by Schulman et al. [1] (referred
to as TrajOpt. To summarize, this approach uses a BVH
for distance check culling and a Jacobian-based procedure to
approximate a gradient:

∂ĉ
∂Θt

= c(Θt) ∗ normalize(g)

g =
∑

{aSt∈S,bSt∈S | f1 ∧ f2 ∧ f3}
(n⊤Jact (Θt))⊤ – (n⊤Jbct

(Θt))⊤

(4)

Here, n is a normalized vector that points in the direction
from the closest point on aS (i.e., act) to the closest point on
bS (i.e., bct). The f logical statements are the same inclusion
filters from Equation 2. A matrix J here denotes the 3 × n
translation Jacobian of a robot model, where n is the number
of robot DOF. These Jacobians are calculated with respect
to the closest points between shapes, either act or bct. If a
particular point pct for any shape pS is not rigidly attached
to the robot model, then Jpct (Θt) is a 3 × n zero matrix.
In order to get a more accurate scaling of the approximate
gradient in Equation 4, we normalize the gradient direction,
g, and multiply it by the output of the original function. All
other baseline conditions compute approximate gradients using
standard finite differencing.

Recorded metrics for Experiment 2 are the number of
solutions returned by the optimization solver per second
(frequency); the percentage of configurations returned by the
optimization that exhibit a self-collision; end-effector transla-
tion error (summed in the case of robots with multiple end-
effectors); end-effector rotation error in radians (summed in
the case of robots with multiple end-effectors); and the average
joint velocity to indicate the smoothness of the motion.

1) Experiment 2 Results: Results from Experiment 2 can
be seen in Figure 5. At a high level, we see that all PROXIMA
conditions perform favorably on Benchmark 2. For instance,
we see that PROXIMA avoids self-collisions in all conditions

and successfully works alongside the end-effector pose match-
ing and joint-smoothing objective terms.

Looking at results on the 6DOF UR5, we see that all
PROXIMA conditions run at a faster frequency than all other
conditions while still affording smooth and accurate motions.
This is especially the case when using a low time budget of
50 microseconds or a loose accuracy budget of ϵ = 0.5. While
the frequency of PROXIMA drops accordingly when the time
budget goes up or the accuracy budget becomes more strict,
these conditions still run at highly interactive rates close to 1
KhZ. We speculate that this is due to the approximate gradient
approach proposed in §IV as each finite differencing pass is
able to quickly recall the summation eligible pairs and is able
to eliminate almost all distance checks by using its tight upper
bound on each perturbation.

Results on the 132DOF multi-robot Hubo system indicate
that time budgeted PROXIMA affords reasonably interactive
frequencies ranging from 42 Hz to 64 Hz depending on the
time budget used. While the lower accuracy budgets for PROX-
IMA resulted in a drop-off in frequency, ranging from 5 Hz to
10 Hz, these results were still faster than all other collision-
avoidance conditions with the exception of TrajOpt. Here,
TrajOpt outperformed all other non-PROXIMA conditions in
terms of frequency while still maintaining high quality mo-
tions. We speculate that this is because of its Jacobian-based
approximation gradient, which avoids iterating through all 132
degrees of freedom using any finite differencing strategy. The
Spheres and Neural Net conditions incur several collisions and
erratic motions away from the end-effector paths, showcasing
their lack of accuracy and robustness especially in this high-
dimensional space. Lastly, we observe that BVH and Grouth
Truth conditions are significantly slowed down by gradient
calculations in this case, resulting in frequencies that would
be too slow for most practical robotics applications.

VI. DISCUSSION

In this work, we have presented a flexible approach for
computing a collision proximity function for robot manipu-
lators that formalizes and allows for control over the trade-off
between efficiency and accuracy. We showed the robustness
of our approach through analytical investigation and thorough
simulation experiments on a wide set of robot models ranging
from 6 to 132 DOF. In the remainder of this section, we note
limitations of our work, pointing towards potential avenues for
future extensions or applications of our approach.

A. Limitations

Our implementation performs well at the scale of hundreds
of objects. However, the method does consider the approxi-
mate signed distances between all object pairs. While these
computations are fast, the quadratic complexity may become
a problem for very large collections of objects. For such
environments, some type of acceleration strategy, such as
hierarchical culling, may be required. Our priority ordering
step considers all distance checks to be equally expensive. In
practice, different object pairs may have different costs for the
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Fig. 5. Results for Experiment 2. Reported metrics are number of solutions returned by the optimization solver per second (frequency); the percentage of
configurations returned by the optimization that exhibit a self-collision; end-effector translation error (summed in the case of robots with multiple end-effectors);
end-effector rotation error in radians (summed in the case of robots with multiple end-effectors); and the average joint velocity.

exact computation which could be considered in addition to
the potential error.

To date, we have tested our approach for self-collisions
in simulations, for both collision checking and within a
collision-aware IK framework. In principle, our approach
should be a drop-in replacement for the proximity functions
used in numerical-optimization based trajectory optimizers and
sampling-based planners. While we expect our method to
perform well in such situations, there may be opportunities to
exploit the repetitive structure of the queries made by such
systems. Similarly, all of our usages to date have been in
simulation. Because our approach makes no assumptions about
the underlying geometric representations, it should extend to
real-world sensed models. There may be ways to specialize
the approach to particular model types such as point clouds,
for example using the semi-infinite programming approach of
Hauser [33].
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APPENDIX A
ROTATION OPERATORS

A. Unit Quaternions

Our notation for unit quaternions will be R = (qw, qv) =
[qw, iqx, jqy, kqz].

1) Inverse: R–1 = (qw, –qv) = [qw, –iqx, –jqy, –kqz]
2) Displacement: disp(R1, R2) = R–1

1 ∗ R2
3) Angle: angle(R) = 2 ∗ acos(qw)

B. Rotation Matrices

1) Inverse: R–1 = R⊤

2) Displacement: disp(R1, R2) = R⊤
1 ∗ R2

3) Angle: angle(R) = acos((trace(R) – 1)/2)

APPENDIX B
PROOFS FOR LEMMAS IV.1 AND IV.2

A. Proof for Lemma IV.1

Case 1: d(aSk,b Sk) > d(aSj,b Sj)
Trivial case as ∆m is always non-negative.

Case 2: d(aSk,b Sk) ≤ d(aSj,b Sj)
Assume d(aSk,b Sk) < d(aSj,b Sj) – ∆m. This assumption can
be rewritten as d(aSj,b Sj) – d(aSk,b Sk) > ∆m. Now, consider
[ack]j and [bck]j as the points at time j that will go on to
be the closest points between aS and bS at time k after aS
and bS reflect transforms aTk and bTk, respectively. Because
∆r = 0 and all change in distance between the shapes is due
to translation, we can say that

d(aSj,b Sj) – d(aSk,b Sk) =

||[ack]j – [bck]j|| – ||ack –b ck||,

||[ack]j – [bck]j|| – ||ack –b ck|| >
∆m = | ||atj –b tj|| – ||atk –b tk|| |

Because all transforms T are rigid transforms, we know that
all points on aS and bS are translated by the same vectors
(atk –a tj) or (btk –b tj) respectively between time j and k. This
contradicts the inequality above, which implies that the new
closest points somehow moved farther than all other points on
the shapes, thus the original assumption must be incorrect and
d(aSk,b Sk) ≥ d(aSj,b Sj)–∆m when d(aSk,b Sk) ≤ d(aSj,b Sj).
■

B. Proof for Lemma IV.2

Case 1: d(aSk,b Sk) > d(aSj,b Sj)
Trivial case as Υ(max(af,b f),∆r) is always non-negative.

Case 2: d(aSk,b Sk) ≤ d(aSj,b Sj)
Assume d(aSk,b Sk) < d(aSj,b Sj) – Υ(max(af,b f),∆r). This
assumption can be rewritten as d(aSj,b Sj) – d(aSk,b Sk) >

Υ(max(af,b f),∆r). Now, consider [ack]j and [bck]j as the
points at time j that will go on to be the closest points between

aS and bS at time k after aS and bS reflect transforms aTk and
bTk, respectively. Because ∆m = 0 and all change in distance
between the shapes is due to angular motion, we can say that

d(aSj,b Sj) – d(aSk,b Sk) =

Υ(||[ack]j –a oj||, s ∗∆r) + Υ(||[bck]j –b oj||, (1 – s) ∗∆r),

s ∈ [0, 1]

Here, s is a value between 0 and 1 that reflects how ∆r is
divvied between the two object’s respective rotations. Based
on our assumption, we can say

Υ(||[ack]j –a oj||, s ∗∆r)+

Υ(||[bck]j –b oj||, (1 – s) ∗∆r), s ∈ [0, 1] >

Υ(max(af,b f),∆r)

We can maximize the left side of this equation by assigning
s = 1 to the term in the sum with the greater distance between
the rotating point and its origin, thus

Υ(max(||[ack]j –a oj||, ||[bck]j –b oj||),∆r) ≥
Υ(||[ack]j –a oj||, s ∗∆r) + Υ(||[bck]j –b oj||, (1 – s) ∗∆r),

s ∈ [0, 1] >

Υ(max(af,b f),∆r)

This implies that max(||[ack]j –a oj||, ||[bck]j –b oj|| >

max(af,b f). However, this contradicts the definitions of af and
bf, meaning the initial assumption in this case cannot be
true and d(aSk,b Sk) ≥ d(aSj,b Sj) – Υ(max(af,b f),∆r) when
d(aSk,b Sk) ≤ d(aSj,b Sj). ■

C. Proof for Theorem IV.3

We will assume there is some ground truth error term
ε+(aS ,b S) between the estimated distance and ground truth
distance d(aSk,b Sk) such that the following is true:

ε+(aS ,b S) = |ℓc(d̂(aSk,b Sk)) – ℓc(d(aSk,b Sk))| >
ε(aSk,b Sk) = max( [ℓc(l(aSk,b Sk)) – ℓc(d̂(aSk,b Sk))],

[ℓc(d̂(aSk,b Sk)) – ℓc(u(aSk,b Sk))] )

Given this assumption, either ℓc(d(aSk,b Sk)) >
ℓc(l(aSk,b Sk)) or ℓc(d(aSk,b Sk)) < ℓc(u(aSk,b Sk)) and,
because ℓc(.) is monotonically non-increasing, either
d(aSk,b Sk) < l(aSk,b Sk) or d(aSk,b Sk) > u(aSk,b Sk).
This observation presents a contradiction because
l(aSk,b Sk) and u(aSk,b Sk) are proven bounds such that
l(aSk,b Sk) ≤ d(aSk,b Sk) ≤ u(aSk,b Sk) meaning our
assumption above is false and there is no ground truth error
ε+(aS ,b S) such that ε+(aS ,b S) > ε(aSk,b Sk).

■
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