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ABSTRACT
Collaborative robots have the potential to be intelligent, embodied
agents that can contribute to remote human collaboration. We ex-
plore this paradigm through the design of robot-mounted camera
systems for remote assistance. In this extended abstract, we discuss
our iterative design process to develop interaction techniques that
leverage shared control-based methods to distribute camera control
between the agentic robot and human collaborators.

CCS CONCEPTS
• Human-centered computing → Computer supported coop-
erative work; • Computer systems organization→ Robotics.
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1 INTRODUCTION
Technologies that support remote collaboration have advanced
significantly in recent decades, and they were indispensable during
the COVID-19 pandemic: tools such as Zoom for video conferencing
and TeamViewer for remote desktop access supported collaborative
work, especially in the information economy. However, remote
support for jobs that involve physical work, such as nursing or
factory work, was rare. This highlights opportunities for the use
of robots that can leverage their physical embodiment to extend
people’s abilities in remote spaces. Advancements in robotics have
enabled collaborative robots that are safe, easy to use, and capable,
opening up a promising space for designing systems that support
remote human collaboration. In this work, we focus on the design
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Figure 1:We design and evaluate robotic camera systems that
help two people collaborate remotely on physical tasks. In
our past work, called Periscope, a local worker completes an
assembly task with guidance from a remote helper who can
view the workspace through a robot-mounted camera.

of robotic camera systems. We contextualize our work in scenarios
where a local user completing manual tasks is co-located with a
robotic arm and collaborates with a remote user who views the local
workspace through a camera mounted on the robot.

We draw from the extensive body of work on telepresence robots
[18], but our work leverages a robot form that is kinematically more
capable than the prototypical tablet-on-wheels robot [9] or tabletop
robot [12, 22] in existing work. This improved capability allows the
remote user to have diverse and detailed views of the workspace
but also increases the complexity of camera control [3]. We posit
that users may focus better on the collaborative task at hand if
they can offload part of the camera control to an autonomous robot
[12, 21]. Thus, our research approach draws from a robot control
paradigm, called shared control [13], to distribute the control of
the robot-mounted camera between the local user, the remote user,
and the autonomous robot depending on task needs. Thus, the key
research questions that guide our work are:

RQ.1 How can we design interaction techniques for camera
control that effectively combine human and artificial intelli-
gence to support remote collaboration?
RQ.2How does a collaborative robot influence human-human
interaction in a remote collaboration setting?
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In past work [17], we designed and implemented the Periscope
system (see Figure 1, §2), which serves as an exploration of RQ.1 and
a platform for further investigation into both research questions.

2 THE PERISCOPE SYSTEM
Periscope is a robotic system for remote assistance that is used by
a local worker to complete assembly tasks with guidance from
a remote helper who observes the workspace through the robot-
mounted camera. A screen interface (see Figure 1) for each collabo-
rator shows the camera view and a simulated 3D view of the robot
and its surroundings. The interface is also equipped with screen an-
notation tools to support referential communication, allows video
conferencing, and enables control of the robot. The camera view
provides a dynamic shared visual context [6], which is task-relevant
visual information that the worker and the helper have in common
and is critical for them to maintain task awareness [5] and develop
a mutual understanding for effective communication [4].

In Periscope, both collaborators can adjust the shared view for
their task needs (e.g., asking questions or providing guidance). The
robot can also adjust the view autonomously to assume part of the
workload of camera control, such as tracking the worker’s hand
and maintaining it in the camera view. A key contribution of our
system is a formulation for shared camera control that consists of a
set of primitives andmodes that enables camera control to be shared
between the three agents so that both the worker and the helper can
shape the view with assistance from the autonomous robot. A core
aspect of shared control systems is the design of arbitration, which
is the division of control among agents when completing a task.
Arbitration in shared control should allow all agents to contribute
and change the type of contribution they make over time [13]. In
this work, we designed primitives and modes (based on our prior
experience designing robotic systems [15, 16]) to uniquely arbitrate
the control of the camera between the three agents.

Primitives are basic elements of our camera control formulation
that give an agent the ability tomodify the shared view. For example,
Set target is a primitive that sets the viewing direction of the camera.
Primitives can be triggered by the helper and the worker through
user input (such as a mouse click or hand gesture) and by the
robot through sensory input (such as depth data from a camera).
Primitives serve as building blocks that can be organized in various
combinations. We posit that, depending on the varying needs over
the course of a task, each agent may require a different amount of
control of the camera view [11, 14]. Thus, we organize the primitives
into three modes that users can toggle between, each of which is
primarily driven by one of the three agents but also allows the other
agents to exert some influence. The inputs (or primitives) from the
three agents are arbitrated in real-time to generate robot motion
and acquire the co-constructed view. The arbitration is done at a
discrete level using the three modes and at a continuous level using
an optimization-based method similar to prior work [19, 20].

3 CURRENT AND FUTUREWORK
Our past work provides insight into RQ.1 through the design of
primitives and modes (for arbitration). Our current work includes
the analysis of data collected during our usability testing of Periscope
with 12 dyads to understand human interactions in robot-mediated

collaboration (RQ.2). We will continue to investigate our research
questions through an iterative design process where we improve the
arbitration mechanisms and the specification of primitives within
Periscope and assess how they impact collaboration.

Evaluation (Ongoing)—We are conducting a thematic analysis [2]
of video recordings from our usability testing of Periscope to quali-
tatively understand robot-supported, dyadic collaboration (RQ.2).
Our early findings include: (1) helpers utilizing the robot’s kine-
matic capabilities to frequently move the camera and obtain diverse
and detailed views; and (2) workers using the robot’s physical em-
bodiment for situation awareness, such as recognizing what the
helper is looking at in the workspace or if the robot is tracking their
hand. Additionally, the robot may serve different roles during the
collaboration process as a tool [8] (e.g., a camera holder), a surro-
gate [10] (e.g., representing the helper’s gaze), or a collaborator [21]
(e.g., tracking an object of interest autonomously during periods
of helper inattention). We plan to use insights from the analysis of
our multi-user, multi-modal data to derive hypotheses and design
decisions for our future systems and establish quantitative metrics
to determine the quality of collaboration supported by our systems.

Arbitration (Planned)—Our usability testing of Periscope revealed
issues with the representation of discrete arbitration as conditional
statements. The logic of UI flow is not explicit in this representation,
making it challenging to validate and debug system behavior. As a
result, there were some unforeseen errors, such as becoming caught
in an infinite loop (a piece of code that does not terminate and
repeats indefinitely). Thus, we plan to improve the representation
in future work using deterministic finite-state Mealy automata.

A finite-state machine (FSM) representation offers a scalable com-
putational model to document and control execution flow within
our system. A Mealy machine’s output depends on the present state
as well as the present input (from the three agents), which lends
itself well to our shared control approach. A deterministic FSM
allows the interface to behave in predictable and legible ways to the
user. Modeling arbitration using such automata allows precise and
comprehensive specification of complex dependencies that may
exist between various inputs (from multiple users) and states of
the system. However, there is a risk that the FSM may become
too complicated to function according to the expectations of the
user [1]. To mitigate this, we plan to use methods from automata
learning to simplify the FSM based on task context. This approach
may additionally help us to identify alternate, non-modal ways of
organizing primitives for arbitration.

Specification (Planned)—In Periscope, the helper used through-
the-lens camera control [7], where the camera view is specified
through controls in the image plane, such as clicking and dragging
left/right/up/down to orbit the camera around a 3D point in the
workspace. The worker could physically move the co-located robot
or use hand gestures to direct the camera. In future work, we want
to improve how users can specify the desired view. For example,
we envision enhancing the capabilities of the simulated 3D view for
object-centric input such as specifying the camera to view the right
side of an object or stay normal to a plane. Additionally, we plan to
conduct co-design sessions with experts familiar with film produc-
tion and cinematography to generate better view specifications and
understand opportunities for other applications of robotic cameras,
such as remote filming (e.g., filming how-to videos of manual tasks).
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