Motion Editing with Spacetime Constraints

Mike Gleicher
Graphics Research Group
Apple Research Labs
(presently unemployed)

The Goal: Animation for the rest of us!

- Motion is hard to create
- Easier to borrow, steal, buy, ...
 - Goal: libraries of clip motion
- Most motion is not reusable
 - particular character, action, context...
- Edit / adjust it to be something else?

Motion Editing with Spacetime Constraints

- A model for motion editing:
 - adjust constraints over entire motion
 - solver attempts to preserve original
- Solve for entire new motions:
 - consider all constraints at once
 - emphasize solution speed over quality
- User interface issues:
 - must specify and visualize edits

An Example

Initial Motion + Desired Change =

- What is a good answer?
 - Character meets new goal
 - Preserves original
 - Resulting motion is a jump
 - Hard to define in general

When is a jump a jump?

Elbow doesn't bend backwards
Arms swing
Knees bend
Balance
Feet start on floor
Feet end up on floor
F=MA
No skidding
Knees absorb landing
What is Spacetime?

- Consider all constraints simultaneously
- Solve for motions
 - “best” motion that meets constraints
- Physics is just a constraint

When is a jump a jump?

- Elbow doesn’t bend backwards
- Arms swing
- Knees bend
- Balance
- Feet start on floor
- Knees absorb landing
- Feet end up on floor
- No skidding

Geometric Constraints - implement as constraints
Signal Characteristics - get from signal match
Other Constraints - deadlock limitations

The Questions

- What constraints?
- What objective function?
- What representation?
- How to solve it?
- How to present it to the user?

Constraints

- Palette of controls for user
- Describe features of motion
 - limitations on character
 - essential constraints on motion
- Nonlinear functions, inequalities
- Implement variational by sampling

The Objective

- Many ways to measure signal differences
- No obvious, general right answer
 - results are non-intuitive
 - choice affects solution difficulty
 - off load importance with constraints

The Representation: Motion Displacement Maps

- Define \(m(t) = m_0(t) + d(t) \)
- Search for \(d(t) \)

- Advantages:
 - good starting point
 - representation independence
 - pick representation for displacement based on desired changes
How to Solve it

We are really re-solving the non-linear constrained optimization problem between each screen refresh!

• Solve a sequence of approximate problems that are easier to solve
• We model as quadratic programs
 – linearize the constraints
 – quadratic objective function
• Line search to use approximation

How to Make it Fast

• Get a fast computer
• Do good computer science
 – sparsity, caching, algorithms, ...
• Forget what’s unimportant
 – trade precision for speed
• Constrain the search space
• Differentialness

The User Interface

• Traditional editing issues apply
 – need to make changes on any frame
 – 3D direct manipulation
• Spacetime makes things harder
 – changes can affect the entire motion
 – all constraints can have affect
• How to visualize what happens?

Feedback

Why not Spacetime?

(for synthesis)

• Equations are hard to solve
 – local minima
 – stiff objectives
• Quality is hard to define with math
 – energetically? – cautiously?
 – like a kangaroo? – like Mike?
• Actions are not just from principles
 – motions from skill, instinct, personality ...

What to look for in the demos

• All in real time on a Macintosh
• All interaction is direct manipulation
• Up to 5400 constraints (final example)
 – at most a handful are specified by user
• Various display mechanisms
 – cycling, strobing, stream lines, ...
• Initial solutions OK, but usually adjusted
• Video is not designed for the talk (Apology)
Why Spacetime?
(for adaptation)

- **Equations are hard to solve**
 - good starting points
 - easy to solve objectives
- **Quality is hard to define with math**
 - reduce importance of objectives
 - objectives by demonstration
- **Actions are not just from principles**
 - get good motion to begin with

What to look for in the demos

- All in real time on a Macintosh
- All interaction is direct manipulation
- Up to 5400 constraints (final example)
 - at most a handful are specified by user
- Various display mechanisms
 - cycling, strobing, stream lines, ...
- Initial solutions OK, but usually adjusted