Towards Comprehensible Predictive Modeling

Michael Gleicher
Department of Computer Sciences
University of Wisconsin Madison
What is a **Good** model?
What is a **Good** model?

Accuracy
What is a Good model?

Descriptive Accuracy
Predictive Accuracy
What is a **Good** model?

- Descriptive Accuracy
- Predictive Accuracy
- Generalizability
- Efficiency in use
- Efficiency in construction
- Robustness
- Data required to build
- Conciseness
- Compactness
- Pre-criptive power
- Self-consistency
- Validatability
- Verifyability
- Simplicity
- Parsimony
Tradeoffs
What is a **Good** model?

- Descriptive Accuracy
- Predictive Accuracy
- Generalizability
- Efficiency in use
- Efficiency in construction
- Robustness
- Data required to build
- Conciseness
- Compactness

- Pre-scriptive power
- Self-consistency
- Validatability
- Verifyability
- Simplicity
- Parsimony

Comprehensibility
What is Comprehensibility?

The ability of some one
to understand some thing
for some reason

This is independent of...

where application, model type,
or how we help them do it
<table>
<thead>
<tr>
<th>Who?</th>
<th>What?</th>
<th>Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakeholders</td>
<td>Phase of the Process</td>
<td>Reason for Wanting</td>
</tr>
<tr>
<td>Developers</td>
<td>Inputs</td>
<td>Improve Performance</td>
</tr>
<tr>
<td>Data Scientists</td>
<td>Methods</td>
<td>Build Theory</td>
</tr>
<tr>
<td>Domain Experts</td>
<td>Model</td>
<td>Extend/Characterize</td>
</tr>
<tr>
<td>Audience</td>
<td>Outputs</td>
<td>Build Trust</td>
</tr>
<tr>
<td></td>
<td>Experiments</td>
<td>Actionability</td>
</tr>
</tbody>
</table>
Who, What, Why

<table>
<thead>
<tr>
<th>Who?</th>
<th>What?</th>
<th>Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakeholders</td>
<td>Phase of the Process</td>
<td>Reason for Wanting</td>
</tr>
<tr>
<td>Developers</td>
<td>Inputs</td>
<td>Improve Performance</td>
</tr>
<tr>
<td>Data Scientists</td>
<td>Methods</td>
<td>Build Theory</td>
</tr>
<tr>
<td>Domain Experts</td>
<td>Model</td>
<td>Extend/Characterize</td>
</tr>
<tr>
<td>Audience</td>
<td>Outputs</td>
<td>Build Trust</td>
</tr>
<tr>
<td></td>
<td>Experiments</td>
<td>Actionability</td>
</tr>
</tbody>
</table>

Modeling is a process

There are many people involved

We should try to help all of them
<table>
<thead>
<tr>
<th>Who?</th>
<th>What?</th>
<th>Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakeholders</td>
<td>Phase of the Process</td>
<td>Reason for Wanting</td>
</tr>
<tr>
<td>Developers</td>
<td>general purpose methods</td>
<td>improve Performance</td>
</tr>
<tr>
<td>Data Scientists</td>
<td>general purpose process</td>
<td>Build Theory</td>
</tr>
<tr>
<td>Domain Experts</td>
<td>specific applications</td>
<td>Extend/Characterize</td>
</tr>
<tr>
<td>Audience</td>
<td>uses the results</td>
<td>Build Trust</td>
</tr>
<tr>
<td></td>
<td>Experiments</td>
<td>Actionability</td>
</tr>
</tbody>
</table>

Who?
- Stakeholders
- Developers – general purpose methods
- Data Scientists – general purpose process
- Domain Experts – specific applications
- Audience – uses the results
<table>
<thead>
<tr>
<th>Who?</th>
<th>What?</th>
<th>Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakeholders</td>
<td>Phase of the Process</td>
<td>Reason for Wanting</td>
</tr>
<tr>
<td>Developes</td>
<td>Inputs</td>
<td>Improve Performance</td>
</tr>
<tr>
<td>Data Scientists</td>
<td>Methods</td>
<td>Build Theory</td>
</tr>
<tr>
<td>Domain Experts</td>
<td>Model</td>
<td>Extend/Characterize</td>
</tr>
<tr>
<td>Audience</td>
<td>Outputs</td>
<td>Build Trust</td>
</tr>
<tr>
<td></td>
<td>Experiments</td>
<td>Actionability</td>
</tr>
</tbody>
</table>
Who, What, Why

<table>
<thead>
<tr>
<th>Who?</th>
<th>What?</th>
<th>Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakeholders</td>
<td>Phase of the Process</td>
<td>Reason for Wanting</td>
</tr>
<tr>
<td>Developes</td>
<td>Inputs</td>
<td>Improve Performance</td>
</tr>
<tr>
<td>Data Scientists</td>
<td>Methods</td>
<td>Build Theory</td>
</tr>
<tr>
<td>Domain Experts</td>
<td>Model</td>
<td>Extend/Characterize</td>
</tr>
<tr>
<td>Audience</td>
<td>Outputs</td>
<td>Build Trust</td>
</tr>
<tr>
<td></td>
<td>Experiments</td>
<td>Actionability</td>
</tr>
</tbody>
</table>
Mix and Match

<table>
<thead>
<tr>
<th>Who?</th>
<th>What?</th>
<th>Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakeholders</td>
<td>Phase of the Process</td>
<td>Reason for Wanting</td>
</tr>
<tr>
<td>Developers</td>
<td>Inputs</td>
<td>Improve Performance</td>
</tr>
<tr>
<td>Data Scientists</td>
<td>Methods</td>
<td>Build Theory</td>
</tr>
<tr>
<td>Domain Experts</td>
<td>Model</td>
<td>Extend/Characterize</td>
</tr>
<tr>
<td>Audience</td>
<td>Outputs</td>
<td>Build Trust</td>
</tr>
<tr>
<td></td>
<td>Experiments</td>
<td>Actionability</td>
</tr>
</tbody>
</table>
Visual exploration of modeling validation experiments

Our Motivation

Who?
- Stakeholders
- Developers
- Data Scientists
- Domain Experts
- Audience

What?
- Phase of the Process
- Inputs
- Methods
- Model
- Outputs
- Experiments

Why?
- Reason for Wanting
- Improve Performance
- Build Theory
- Extend/Characterize
- Build Trust
- Actionability
Pleasant Surprises

Who?
Stakeholders
Developers
Data Scientists
Domain Experts
Audience

What?
Phase of the Process
Inputs
Methods
Model
Outputs
Experiments

Why?
Reason for Wanting
Improve Performance
Build Theory
Extend/Characterize
Build Trust
Actionability
Pleasant Surprises

Who?
- Stakeholders
- Developers
- Data Scientists
- Domain Experts
- Audience

What?
- Phase of the Process
- Inputs
- Methods
- Model
- Outputs
- Experiments

Why?
- Reason for Wanting
- Improve Performance
- Build Theory
- Extend/Characterize
- Build Trust
- Actionability
Pleasant Surprises

Who?
- Stakeholders
- Developers
- Data Scientists
- Domain Experts
- Audience

What?
- Phase of the Process
- Inputs
- Methods
- Model
- Outputs
- Experiments

Why?
- Reason for Wanting
- Improve Performance
- Build Theory
- Extend/Characterize
- Build Trust
- Actionability
Agenda

Understand Understandability

Metrics for Measuring

Tools for user control over tradeoffs
 tunable methods
 different methods to give options
3 Paths to Understandability

Easier to understand models

Better explanations/visualizations of existing models

Co-design of models and visualizations
3 Paths to Understandability

Easier to understand models
 Explainers (VAST 2013)

Better explanations/visualizations of existing models
 Protein Surface Classifier Validation (EuroVis14)
 Serendip (VAST14)

Co-design of models and visualizations
 Molecular Motion Illustration (TVCG12)
 Splatterplots (TVCG13)
Thanks!
To you for listening.
To the organizers for inviting me
To my students and collaborators.
To the NSF and Mellon Foundation for funding.

Towards Comprehensible
(Predictive) Modeling

Michael Gleicher
University of Wisconsin Madison
gleicher@cs.wisc.edu