

Compositing

- How do we combine pictures seemlessly?
- Weatherman in front of weather map?
- Flying saucer/monster in 1950s movie?
- CG element in a live action movie?
- Multiple live action elements?

Mattes

- Make the images the same size, but have transparent regions
- Optical Printing (old movie production)
- Expose the film multiple times
- Have an image that is solid where the image should not go
- Mask or "matte"

Outline - Compositing

- What is compositing?
- Why? (really defer till next week)
- What is digital compositing?
- How does it work?
- (briefly) where do mattes come from?

How would you do it by hand?

- Cut out picture and paste it
- Picture has an irregular shape
- Not the same as the original image
- Want to keep images all the same size
- Film: keep it all the same size
- Digital - hard to have non-rectangles

Digital Mattes

- An image the same size as the "regular" image
- For each pixel, store whether or not you want that pixel
- When assemble the images - pick the "top" image when matte has a value

Matte as Opacity

- Value 0 = transparent
- Value 100% (255?) = solid
- Can have semi-transparent (50\% opacity)

Matte as filling pixels

- Little square model
- Opacity says how full each pixel is - 100\% - totally full, nothing gets through - 0\% - totally empty, everything gets through - 50% - half full - on average, half the stuff gets through
- Can't see the details of which 50% (since its just a pixel, and has a single value)
- Get accurate edges (halfway = half full)

Alpha channel

- Store opacity as a $4^{\text {th }}$ "Color"
- Each pixel has RGB, A
- $A=100 \%$ (255?) then solid

How over works

- Use the little square model for intuition
- Suppose half full for the moment
- Can't know which half - assume statistically uncorrelated.
- We'll draw pictures so that it works out.

Compositing

- Assume 1 image "over" the other
- Image $A=(r, g, b, a)$ and $B=(r, g, b, a)$
- Done per pixel (assume samples in the same place)
- What is the resulting color $-C(r, g, b, a)=A(r, g, b, a)$ OVER B(r,g,b,a)
- There are other operators too

The 4 possibilities:

- Alpha says probability a location is "covered"
- Aa means in A
- Ba means in B
- 4 possibilities
- In neither (1-Aa)(1-Ba)
- In A but not B Aa (1-Ba)
- In B but not A Ba (1-Aa)
- In both Aa Ba

Compositing Operator

- Decide what should happen in each region
- Weight result by the area of each region - Areas = probabilities, percentage of the whole
- A Over B
- Neither = nothing
- A only = A
- B only = B
- A and $\mathrm{B}=\mathrm{A}$ (since over)

What is the new alpha?

- When is there "something"
- $\mathrm{Aa}+\mathrm{Ba}-\mathrm{AaBa}$ (don't count the both case twice)
- Add up the areas of the regions that are filled
$-\mathrm{Aa}(1-\mathrm{Ba})+\mathrm{Ba}(1-\mathrm{Aa})+\mathrm{Aa} \mathrm{Ba}$
$-A a-A a B a+B a-A a B a+A a B a$
$-\mathrm{Aa}+\mathrm{Ba}-\mathrm{Aa} \mathrm{Ba}$

A over B

- Neither $=(1-\mathrm{Aa})(1-\mathrm{Ba}) 0$
- A Only = Aa (1-Ba) Acolor
- B Only = Ba (1-Aa) Bcolor
- A and B = Aa Ba Acolor
- Add them up...

$$
\begin{aligned}
& \mathrm{Aa}(1-\mathrm{Ba})+\mathrm{Aa} \text { Ba Acolor + } \\
= & \mathrm{Ba}(1-\mathrm{Aa}) \mathrm{B} \text { color } \\
= & \mathrm{Aa} \text { Acolor + (1-Aa) Ba Bcolor }
\end{aligned}
$$

Other operators

- Specify what happens in each "quadrant"
- 1 = neither (always 0)
-2 = A only (choices 0 or A)
$-3=B$ only \quad (choices 0 or B)
$-4=A$ and $B \quad$ (choices $0, A$ or B)
- For each of 2-4 pick a different result to get a different operation
- 12 possible operators

Warning: in the original notes
A held-inside B $\begin{aligned} & \text { I called this "atop" which is a } \\ & \text { different operator }\end{aligned}$ different operator

- Give color A only when it is inside of B
- $1=0$ (no color if neither)
- $2=0$ (no color if A not on B)
- $3=0$ (no color if no A)
- $4=A(A$ is on top of $B)$

Ccolor = Aa Ba Acolor
$\mathrm{Ca}=\mathrm{AaBa}$
A atop B I used "atop" to describe heldin

- Give color A when it is on top of B (and give B otherwise
- 1 = 0 (no color if neither)
- $2=0$ (no color if A not on B)
- 3 = B (places where B with no A on top)
- $4=A(A$ is on top of $B)$

Ccolor = Aa Ba Acolor + (1-Aa) Ba Bcolor $\mathrm{Ca}=\mathrm{AaBa}$

Pre-Multiplied Alpha

- Notice that the color always appears multiplied by alpha
- Can make all this much easier by premultiplying (storing Aa Acolor, not Acolor)
- Transparent pixel has no color
- Conceptually clean
- Popular thing to do
- Our image library does it (beware)
- Can't get colors back (alpha=0)

Blue Screen / Green Screen

- Naïve version:
- Assume objects generally have blue in proportion to other colors
- Grey flying saucers in 1960s movies
- Alpha $=1$ - (B-uG) (where $.5<u<1.5$)
- Clamp (gives a threshold - must be more blue than green)
- Alpha $=1-\mathrm{u} 1(\min (B f, B k)+u 2 G))$

Alpha $=1-\mathrm{ul}(\mathrm{min}(\mathrm{B}, \mathrm{Bk})+\mathrm{u} 2 \mathrm{G}))$

Blending functions

- Premultiplied gives easy common form Ccolor $=$ F Acolor + G Bcolor $\mathrm{Ca}=\mathrm{FaAa} \mathrm{FbBa}$
- Fa and Fb determined based on operation
- Over $\mathrm{Fa}=1, \mathrm{Fb}=(1-\mathrm{Aa})$
- Atop $\mathrm{Fa}=\mathrm{Ba}, \mathrm{Fb}=0$

Where does alpha come from?

- Paint it as a separate channel
- Various matting algorithms
- Chromamatte (equal to a color)
- Lummamatte (bright/dark pixels)
- Difference matte (pixels same in 2 image=back)
- Tricky to get partial opacities
- Is it part red/part blue (screen) or purple?
- Important: otherwise get fringe effects

Really hard!

- Background is never really pure color - Try to get lighting constant
- Edge pixels, hair, etc. are partially background
- Shadows, spill (blue background reflects onto objects), transparent objects, ...
- Modern algorithms use fancy computer vision on neighborhoods of pixels
- Expensive fancy software in effects industry!

Next week...

- I'm at a conference (show stuff later in semester)
- Monday / Wednesday - Li Zhang
- Talk about warping and morphing (more resampling). Plus vision applications.
- Part of project. Also, TAs to give project hints
- Fiday - Perry
- Special Effects!
- He has had 2 companies - won an Academy Award and an Emmy award!

