Pinhole Camera Model

- Aka perspective projection model

- For each scene paint only
1 ray can enter camera
- Pinhole $=$ center of projection
- Pinhole too bis \Rightarrow blurring Pinhole too small \Rightarrow blurring
- Long exposure time reed led

Perspective Projection

- Image plane orthogonal to z axis (called optical axis)
- Camera frame origin at center of projection
- 3D scene point $P=(x, y, z)^{\top}$ projects to image point $p^{\prime}=(x, y, z)^{\top}$ where $z^{\prime}=f$ (focal length)

Before the Discovery of Perspective

di Bartolo, "The Nativity of the Virgin" (c. 1400)

di Giovanni Fei, "The Presentation of the Virgin" (c. 1400) 3

Ambrogio Lorenzetti (1342) The presentation in the temple. Panel, Uffizi, Florence

Natural Perspective

Euclid's Optics (300 BC)

- Visual ray: from point on object to eye
- Visual cone: from contour of object to eye
- Euclid’s Law: diminution in visual angle with distance

Italian Renaissance

- Linear perspective
- Illusionistic 3D space
- Sculptural body
- Natural pose, individual expression
- Humanized suffering

"Perspective is nothing else than the seeing of an object through a sheet of glass, on the surface of which may be marked all the things that are behind the glass."

```
-- Leonardo
```


Alberti's Window

"First of all, on the surface on which I am going to paint, I draw a rectangle of whatever size I want, which I regard as an open window, through which the subject to be painted is seen."
-- Alberti (1435-6)

Hieronomous Rodeem (1531) Johan II of Bavaria. Woodcut.

Point-Plotting Method

- Use strings to embody Euclid's visual rays

Albrect Dürer (c. 1525) Two draughtsmen plotting points for the drawing of a lute in foreshortening. Woodcut.

Alberti's Method (1435): "Construzione Legittima"

1. Draw "open window", with a human figure 3 braccia high
2. Mark baseline in units of 1 braccio
3. Draw Centric Point at eye level (determines severity of convergence)
4. Draw orthogonals
5. Draw horizon line
"Little Space"

6. Draw "little space", with a point at the height of the Centric Point (like elevation view, with eye point)
7. Draw baseline with units of 1 braccio (like ground plane)
8. Draw a vertical line (like picture plane)
9. Draw diagonals (like visual rays)
10. Draw transversals at intersections

Modified Alberti Method

- Slide the "little space" over so the right side of the rectangle becomes the picture plane
- DB is a "check line" for verifying correctness

Masaccio’s"Trinity" (c. 1425-8)

- The oldest existing example of linear perspective in Western art
- Use of "snapped" rope lines in plaster
- Vanishing point below orthogonals implies looking up at vaulted ceiling

Piero della Francesca, "Flagellation of Christ" (c. 1455)

- Carefully planned
- Strong sense of space
- Low eye level

Leonardo da Vinci, "Last Supper" (c. 1497)

- Use of perspective to direct viewer’s eye
- Strong perspective lines to corners of image

Distant Objects are Smaller

Parallel Lines Meet

Geometric Properties of Projection

- Points go to points
- Lines go to lines
- Planes go to whole image
- Polygons go to polygons
- Degenerate cases
- line through focal point to point
- plane through focal point to line

Perspective Projection (cont.)

- Perspective projection equations

$$
\left\{\begin{array}{l}
x^{\prime}=\frac{f x}{z} \\
y^{\prime}=\frac{f y}{z} \\
z^{\prime}=f
\end{array}\right.
$$

- Vanishing point $=$ point in image beyond which projection of straight line cannot extend

- Focus of Expand cion (FOE)

When camera tranilater trajectories When camera image pats appear to move towards of away from a fixed point called FOE which is common point call. banishing pt. bonce all pt movinatalong

Vanishing Points

- each set of parallel lines
(= direction) meets at a different point
- The vanishing point for this direction
- Sets of parallel lines on the same plane lead to collinear vanishing points
- The line is called the horizon for that plane
- Good ways to spot faked images
- scale and perspective don't work
- vanishing points behave badly
- supermarket tabloids are a great source

- Rotation about coordinate ares

Ex. About z-axis:
$\left\{x^{\prime}=x \cos \theta-y \sin \theta\right.$
$\left\{\begin{array}{l}y^{\prime}=x \sin \theta+y \cos \theta\end{array}\right.$
$\left\{z^{\prime}=z\right.$
$\Rightarrow R_{z}=\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \text { Also, } R_{x}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& B_{y}=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- Any transformation involving translation, scale or rotation can be written as $P^{\prime}=M P$
where M constructed by comporing transformation matrices
Ex.
$\left[\begin{array}{lll}1 & 0 & a \\ 0 & 1 & 6 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}\alpha & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}\alpha \cos \theta & \beta \sin \theta & \alpha(a \cos \theta-b \sin \theta) \\ -\alpha \sin \theta & \beta \cos \theta & \beta(a \sin \theta+b \cos \theta) \\ 0 & 0 & 1\end{array}\right]$
- Translations are commutative,
- General transformation matrix of form:

$$
\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & T_{x} \\
a_{21} & a_{22} & a_{23} & T_{y} \\
a_{31} & a_{32} & a_{33} & T_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Projection using Homogeneous Cords

- Perspective Projection
- Orthographic Projection

$$
\left[\begin{array}{l}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]}
\end{array}\right] \underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & f \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]}_{\text {Tomyranic }}
$$

Camera Matrix

- Turn previous expression into HC's
- HC's for 3D point are (X,Y,Z,T)
- HC's for point in image are (U,V,W)

$$
\left(\begin{array}{c}
U \\
V \\
W
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z \\
T
\end{array}\right)
$$

Projection Matrix for Orthographic Projection

$$
\left(\begin{array}{c}
U \\
V \\
W
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
X \\
Y \\
Z \\
T
\end{array}\right)
$$

- Note: Since image plane $a t t=f$, perspective projection equation can be written as:
$\left[\begin{array}{l}x \\ y_{d} \\ y_{d} \\ w\end{array}\right]=\left[\begin{array}{llll}x & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ \vdots \\ 1\end{array}\right]$
and $\therefore\left\{\begin{array}{l}x^{\prime}=x_{n} / w \\ y^{\prime}=y_{n} / w\end{array}\right.$
\Rightarrow Camera $=$ linear projective
transform from 3D projective space to $2 D$ projective plane
- 3×4 matrix called camera perpescoun projection matin

Camera Parameters

- Issue
- camera may not be at the origin, looking down the z-axis
- extrinsic parameters
- one unit in camera coordinates may not be the same as one unit in world coordinates
- intrinsic parameters - focal length, principal point, aspect ratio, angle between axes, etc.
$\left(\begin{array}{c}U \\ V \\ W\end{array}\right)=\left(\begin{array}{l}\text { Transformation } \\ \text { representing } \\ \text { intrinsic parameters }\end{array}\right)\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}\text { Transformation } \\ \text { representing } \\ \text { extrinsic parameters }\end{array}\right)\left(\begin{array}{l}X \\ Y \\ Z \\ T\end{array}\right)$

