
1

Lecture 2

Quick scan through:
• Basics of an image
• Mechanics of drawing (for practice

i t)assignment)
• Basic ideas of images/drawing (a scan

through Chapter 3)

• A brief touch on a bunch of topics we’ll come
back to later

A window on the screen

• Some 2D picture

Aside #1
• How did we get a window on the screen in

the first place?

• Operating system, window system, toolkit

Basic toolkit questions

• For class: FlTk, GLUT
– Why? (why not)

• When do I draw (redraw, idle, damage)
– Event models

• Where do I draw
• How do I draw (double buffering)
• What happens when I draw
• What about user interaction?

How will I draw

• Directly access pixels
– In image data structures, let toolkit display
– Or just read/write to files

U t lkit (d th f h d)• Use toolkit (and therefore hardware)
– Primitives (geometry)

• OpenGL

• Practice assignment – draw something

Things to know about OpenGL
(for practice assignment)
• What is X,Y (coordinate system, NDC)
• State model
• Primitives
• Basic Commands• Basic Commands

Kinds of things
• Set up coordinate systems
• Draw primitives
• Control appearance of primitives
• Other drawing control

(back to images)
Measuring on the image plane
• Want to measure / record the light that hits

the image plane
• At every position on the image plane (in the

image) we can measure the amount of lightg) g
– Continuous phenomenon (move a little bit, and it

can be different)
– Can think of an image as a function that given a

position (x,y) tells “amount” of light at position
i = f(x,y)

– For now, simplify “amount” as just a quantity,
ignoring that light can be different colors

2

How to think about sampled
images
• Little squares?

– Little regions of the image?
• Sometimes useful for thinking about
A pixel is not a little square…

• Piecewise linear approximation of an image
• Discrete measurements of continuous thing

– Individual measurements or samples
– Usually regular grids

Displays

• Continuous vs. Discrete

• Flicker rate
• Real world vs. Movies vs. TV

• Old fashioned TV (CRT)
– Raster scan / retrace (discrete lines)
– Interlace (radio limitations)

Practical Aside
Storing images
• Need to store a measurement for each pixel
• X * Y pixels * (# bits per pixel)
• R,G,B
• An extra “A” (transparency)
• 8 bits integer per channel (often OK – more

in a minute)

• Lots of data – lots of redundancy

Image formats

• Lots of them
• Often compressed
Practice assignment
• Simple format: TARGA (.tga)
• We provide a really simple library
• No compression

• JPEG, PNG – built into FlTK – but only
reading, so use TGA for imaging assigns

Raster Images

• Why is it called a raster
• Pixel order, channels (RGB vs. RRR…GGG)
• Row padding

• What to store
– RGB vs. I vs. RGBA
– Fixed point vs. Floating point
– 8 bits vs. more (later)

What is “A” (alpha)

• Kindof treating like an extra color

• “Opacity” of pixel
• As if image were painted on glass
• Useful for “compositing” one picture over

another

3

What numbers to store?

• Ideally:
– Continuous amount (nearly, discrete quanta of

photons)
– Huge range (surface of sun vs dark room)Huge range (surface of sun vs. dark room)

• Practically:
– Mainly interested in what we can see
– What differences we can tell

– If we’re making pictures, not for analysis

How sensitive is the eye?

• Amazing range!
– Night vision – when eyes adjusted, camping
– Bright daylight

• Sunlight 10000.
• Twilight 10.Twilight 10.
• Starlight 0.001

• Catch: at any given time, can’t see this range
– Adaptation – bright light, iris closes, lets in less light, …

• At any given time, about 100:1 contrast ratio
– This is a lot more than most displays
– Better displays = more constrast

• Often by blacker blacks

High Dynamic Range Imagery

• Most sensors/displays have less range than eye
– Certainly less range than scenes do

• What happens?
– Bright areas – all white (no details)g ()
– Dark (shadow) areas – all black (no details)

• What to do?
– Adjust exposure (time, aperature, sensitivity) to get the

most important stuff
– Acquire “High Dynamic Range” Imagery

• Special sensors
• Multiple exposures (at different settings) – cool thing to do

– HDR later in the course

Perception of intensity

• Eye senses relative differences
– Equivalent differences 50:100 20:40
– Hard to tell absolute differences directly

• Adaptation to current setting

• Can sense 1% differences• Can sense 1% differences
• At any given time 100:1 contrast ratio

• How many levels can you see in an image?
– 1.01 ^ 463 = 100.2 (e.g. 463 1% differences = 100:1)
– This is about 8 bits of precision (less than 9)
– But its VERY non linear 1, 1.01, …. , 99.2, 100.2

Non-linearity of intensity

• Non-linear mapping from “amount of light” to
perceived brightness

• Want uniform mapping of intensities -> perception
– Level 1, 2, 3, …. 255 -> 1, 1.01, 1.02, … 99, 100

• Worse: displays are non-linear too
– Voltage -> amount of light is non-linear
– Different displays are different

• Want to linearize the system
– Intensity levels map nicely to perceived levels

Gamma correction

• Idea: put a non-linear function between
intensity and output
– Done as the last step (usually) – after all

computationscomputations
• Could create arbitrary functions for mapping

– Too cumbersome
• Exponential is a good approximate model

– Exponential non-linearity of perception
– Exponential power laws in CRTs

4

Modeling a display device

• 5/2 power law (five-halves)
– Models physics of a CRT
– Real CRTs are close, LCDs designed to be

similarsimilar
• L = M (i+ε)^γ

– i = input intensity value
– L = amount of light
– ε = since zero isn’t really black
– M = maximum intensity
– γ = specific property of display

Linearizing the display

• Define a function g that corrects for non-
linearity

• L = M (g(i))^γ (ignoring ε)
G 1/– G = 1/ γ

• Where do we get γ from?
– Pick it so things look right

• Note: 1st order approximation (very simple)
– Only 1 parameter to specify (γ), many factors

Gamma correction

• Want value 0 = minimum intensity
• Want value max (1 or 255) = maximum intensity

--- those 2 are easy to get
• Pick one more point• Pick one more point

– Midpoint should be 50%
– Easy – show 50% black white + 50% gray
– Adjust gamma until it looks the same

• All this happens “behind the scenes”
• Everything gets harder when we deal with color

What to store in the frame
buffer?
• Frame Buffer = rectangular chunk of memory
• Intensity measurements

– Deal with color later, basically store multiple
monochrome

C ti f i t iti• Continuous range of intensities
– 8-9 bits of precision ideally

• More since can’t get exactly right (10-12 bits)
• More since want more dynamic range (12-14 bits)
• More since want linear space to make math easy (16-32 bits)

• Discrete set of choices – QUANTIZATION
– Inks, palettes, color tables, …
– Less storage cost + Color table animation

Geometry to Images

• How do we draw?
– Set pixels / alter existing values
– Convert geometry

• Rasterization: convert geometry to pixel
values
– Line drawing, Triangle drawing

• Taken care of in hardware nowadays
– Hardware uses different algorithms

Line-Drawing algorithm
Brezenham’s or Midpoint
• Requirements

– No skipped pixels
– No floating point

K Id• Key Ideas:
– Limit to 1 octant (0->45 degrees)
– Get others by symmetry
– 1 pixel per column
– Each step – either horizontal, or up one
– Decision rule: if pixel is above “midpoint”

5

Aliasing

• Line is a continuous thing
• Pixels are discrete measurments

– Imperfect representation

• Jaggies, Crawlies
• Line-weights
• Sub-pixel positions

Aliasing

• Lost information because using a continuous
representation

M “ ti ” thi 1 di t thi• Many “continuous” things = 1 discrete thing
– They are “aliases” of each other

• Lots of theory (later)

Anti-Aliasing

• Once you’ve aliased you’ve lost

• Can do drawing to try to minimize the visual
tif tartifacts

– Simplistic: soften hard edges
– Not “all in 1 bucket” – spread it out

• We’ll look at this a lot – mainly in context of
photo processing

