
1

Notes on Sampling (L3-…) What is a pixel

• One of these finite measurements
• At a particular position

• Point sample – value at a specific place• Point sample – value at a specific place
– Infinitesimally small place

• Finite region of constant value (little square)
– Doesn’t actually model things better (inconsistent)
– Mathematically less convenient
– Useful for some thought experiments later on

A pixel is not a little square!

• Sensors average over region
– Doesn’t mean its really peicewise constant
– Don’t really know what went on in the square

• Point Samples (paradoxically) fit better with
the finite case (the buckets, screen dots)
– Sensing – estimation of what happens at the

point from the neighborhood
– Display – neighborhood is created based on the

points inside of it (splats, bleeding, …)

Point Sampling Has Problems

• Miss small things
• Problem: discretization throws away

information

• Don’t know what happens between samples

• Sampling loses information – you cannot get
back the information once its lost!

Aliasing

• Technical term for sampling problems

• If you lose information and “make it up”
t i d ff twrong, you get weird effects

Why do we care?

2

Bad sampling is bad

• Miss small things between
samples

Ugly

• Imagine line drawing

• Jaggies
• Crawlies

– Small change causes jump
– Smooth motion becomes

jumpy

Get really weird results

• Sample a checkerboard
– Look at a sampled picture

• Too few samples
– Get all black
– Get all white

G t i d tt– Get weird patterns
• Aliasing
• Moire’

– Arbitrary algorithm decision
gives very different answers!

• Imagine resampling

Demonstration ratios: 4/6 (here) = 2/3

Dealing with discretization

• Sampling
– Understand what information we are throwing away

• Reconstruction
– Recreate as well as possible from the samplesp p

• Re-Sampling
– Sample a sampled image
– Transform the image

• Signal Processing / Image Processing
• Consider the 1D case first since its easier

Intuition

• Too few samples = BAD

• Sampling rate depends on the
thing you’re sampling

N d t l l h t• Need to sample close enough to
get smallest object

• Need to limit small objects to be
big enough that they aren’t
missed

A different intuition

• Not really point sampling
– Mesurements average over a finite range
– Displays make finite dots

• Need to model these
– Sampling filters reconstruction filters– Sampling filters, reconstruction filters
– Averages over regions -> Convolution (generalized)

• Need to be realistic about what they mean
– Can’t see everything (too small, …)

• Sampling theory gives a nice mathematics for this!

3

Point sampling in 1D

• Only record samples

• Don’t know what happens
in between samples

• Given the samples, don’t
know what really
happened!

Reconstruction from Sampling

• Can’t localize events
– Bigger problems than that

• No idea! Signal could be
anything

• Without additional information,
we’re guessing as to what the
signal is

• But what additional info?

Sampling Intuitions

• Reconstruct the “smoothest” signal that makes sense from
samples

• If signal is “smooth enough”, sampling will give something
we can reconstruct

• If signal is not “smooth”, sampling will give something that
will reconstruct to something else
– Aliasing

• But how do we define “smooth”

Point sampling in 1D

• Only record samples

• Don’t know what happens
in between samples

• Given the samples, don’t
know what really
happened!

Reconstruction from Sampling

• Can’t localize events
– Bigger problems than that

• No idea! Signal could be
anythinganything

• Without additional
information, we’re
guessing as to what the
signal is

• But what additional info?

Sampling Intuitions

• Reconstruct the “smoothest” signal that
makes sense from samples

• If signal is “smooth enough” sampling willIf signal is smooth enough , sampling will
give something we can reconstruct

• If signal is not “smooth”, sampling will give
something that will reconstruct to something
else
– Aliasing

4

Signal processing

• Need better “language” for talking about
signals

Id t i l i diff t• Idea: represent signals in a different way
• Up till now: time domain (graph against time)

– Good for asking “what does signal do at time X”
• New idea: frequency domain

– Good for talking about how smooth signals are

• Different view of the same thing

Frequency Domain

• Fourier Theorem:
– Any periodic signal can be represented as a

sum of sine and cosine waves with harmonic
frequenciesq

– If one function has frequency f, then its
harmonics are function with frequency nf for
integer n

– Extensions to non-periodic signals later
– Also works in any dimension (e.g. 2 for images,

3, …)
• Example: box

Example: Box (Square Wave)

• 1 cosine – bad
• More cosines, better

approx -0.25

-0.05

0.15

0.35

0.55

0.75

0.95

1.15

0.75

0.95

1.15

⎪⎧ ≤ 11 x

-0 .2 5

-0 .0 5

0.15

0.35

0.55

0.75

0.95

1.15

-0.25

-0.05

0.15

0.35

0.55

-0.25

-0.05

0 .1 5

0 .3 5

0 .5 5

0 .7 5

0 .9 5

1 .1 5⎪⎩

⎪
⎨
⎧

>

≤
=

2
1 0
2

1 1
)(

x

x
xf

⎟
⎠
⎞

⎜
⎝
⎛ −+−+=

−
−

−+= ∑
∞

=

−

Lxxx

k
xkxS

k

k
boxes

ωωω
π

ω
π

5cos
5
13cos

3
1cos2

2
1

12
)12cos()1(2

2
1)(

1

1

Intuitions

• Low frequencies are smooth
– High frequencies change fast, are not smooth

If i l b d f l l• If a signal can be made of only low
frequencies, it is smooth

• If a signal has sharp changes, it will require
high frequencies to represent

General Functions

• A non-periodic function can be represented
as a sum of sin’s and cos’s of (possibly) all
frequencies:

∫
∞

∞
= ωω ω deFxf xi)(

2
1)(

• F(ω) is the spectrum of the function f(x)
– The spectrum is how much of each frequency is

present in the function
– We’re talking about functions, not colors, but the

∫ ∞−π2
xixe xi ωωω sincos +=

Fourier Transform

• F(ω) is the Fourier Transform of f(t)
– A different representation of the same signal

• To get f(t) back you use the Inverse Fourier
TransformTransform

• You don’t need to know how to compute
them

∫
∞

∞−

−= dxexfF xiωω)()(

5

Cosine and Its Transform

0

0.5

1

1.5

π

-1.5

-1

-0.5 1-1

If f(x) is even, so is F(ω)

Sine and Its Transform

0

0. 5

1

1. 5

-1

π

-1. 5

-1

-0. 5 1

-π

If f(x) is odd, so is F(ω)

Constant Function and Its Transform

The constant function only contains the 0th frequency
– it has no wiggles

Box Function and Its Transform

0 5

0.7

0.9

1.1

1.3

1.5

0.7

0.9

1.1

1.3

1.5

-0.5

-0.3

-0.1

0.1

0.3

0.5

-0.5

-0.3

-0.1

0.1

0.3

0.5

Delta Function and Its Transform

Fourier transform and inverse Fourier transform are
qualitatively the same, so knowing one direction
gives you the other

Shah (Spikes) and Its Transform

6

Gaussian and Its Transform

0. 13

0. 18

0. 13

0. 18

2

2

2
1 x

e
−

π

- 0. 02

0. 03

0. 08

- 0. 02

0. 03

0. 08

They are the same

• The spectrum of a functions tells us the
relative amounts of high and low frequencies
– Sharp edges give high frequencies

Smooth variations give low frequencies

Qualitative Properties

– Smooth variations give low frequencies
• A function is bandlimited if its spectrum has

no frequencies above a maximum limit
– sin, cos are band limited
– Box, Gaussian, etc are not

• To band-limit a signal we low-pass filter it

Sampling Theorem (intuition)

• High frequencies get lost
– Can only sample band

limited signals

• Sampling rate must be 2
times higher than signalg g

• Signal must be half
frequency of sample rate
– Otherwise, signal can “turn

around” between samples

• Nyquist rate
– 2x highest frequency in

signal

Sampling Theorem

• If your signal is bandlimited
• And you know what the band limit is
• And you sample at (at least) twice that

ffrequency
– Above the Nyquist rate

• Then – you can reconstruct your signal
EXACTLY!

• Caveat
Ideal reconstruction requires perfect band

Sampling theory in practice

• When you’re sampling- PREFILTER
– Make sure no high frequencies
– Need to remove them BEFORE sampling

Otherwise aliasing– Otherwise, aliasing
– Filtering effectively means blurring

• When you’re reconstructing – FILTER
– View as a spike chain (remove HF)
– Filtering effectively means interpolating

Sampling Theory

• Given a set of samples (at a sampling rate):
– There is exactly one band-passed signal that

goes through those samples
– Where the band-pass is less than half theWhere the band-pass is less than half the

sampling rate

• Ideal reconstruction
– View samples as spike chain, low-pass filter
– Need an ideal low-pass filter
– Approximate ideal low-pass filter

7

Sampling Theory (2)

• If we sample a band-passed signal
AND the sampling rate is > 2*highest freq
THEN we can do ideal reconstruction

• If you know the highest frequencies you care
about, you know how fast you need to
sample!
– CD Audio Example: human hearing isn’t so

great after 22Khz, so sample at 44.1Khz

Sampling Theory (3)

• If your signal is not bandpassed
(i.e. has HF >= 2*sampling rate)
THEN you will get aliasing when you sample

• Once you’ve aliased – you can’t go back!
• You have no idea what the original was!

• Need to PREFILTER the signal before
sampling to make it bandpassed

Filtering: Convolutions

• A general filter is a function on an image that
produces another image

M filt i l i th• Many common filters are simpler in the
Fourier domain

• Choice:
– Transform image, filter, inverse transform image
– Inverse transform operator, apply in spatial

domain

Theory vs. Practice

Theory
• Properly sampled original
• Know bandlimit

Practice
• Who knows about source?
• Assume that its OK?

• Band-limit signals
• Use Ideal Filters

• Ideal Reconstructions

• Ideal LPF not practical
• Use approximations

• Tradeoffs for “ideal”
– Might look blurry
– Might want aliasing

(sharpness)
– Care about efficiency

What is a filter anyway?

• Frequency filters
– Add remove different frequencies

M lti li ti i f• Multiplication in frequency means
CONVOLUTION in time/space

• Continuous and Discrete Convolutions

Filters

• A filter is something that attenuates or
enhances particular frequencies

• Easiest to visualize in the frequency domain,
where filtering is defined as multiplication:where filtering is defined as multiplication:

• Here, F is the spectrum of the function, G is
the spectrum of the filter, and H is the filtered
function. Multiplication is point-wise

)()()(ωωω GFH ×=

8

Qualitative Filters

×

F G

=

H

Low-pass

×

×

=

=

High-pass

Band-pass

Can you transform an operator?

• Many filters are multiplication in frequency
domain

F i t f f lti li ti i• Fourier transform of multiplication is
convolution

• Fourier transform of convolution is
multiplication

Signal Transf.
Signal

Freq Domain
Operation

Filtered
Signal

Result

time frequency

Signal

Result

time frequency

*

Filtering in the Spatial Domain

• Filtering the spatial domain is achieved by
convolution

∫
∞

∞−
−=⊗= duuxgufgfxh)()()(

• Qualitatively: Slide the filter to each position,
x, then sum up the function multiplied by the
filter at that position

Convolution Example

Result

Filter Function

Convolution Theorem

• Convolution in the spatial domain is the
same as multiplication in the frequency
domain
– Take a function, f, and compute its Fourier

transform, F
– Take a filter, g, and compute its Fourier

transform, G
– Compute H=F×G
– Take the inverse Fourier transform of H, to get h
– Then h=f⊗g

• Multiplication in the spatial domain is the
same as convolution in the frequency

What’s a filter?

• Generic – an operation that maps a signal to
another signal

S ifi ll LOW PASS filt• Specifically: a LOW-PASS filter
– Attenuates high frequencies

– Easy to describe in frequency domain
(give frequency response)

– Multiply certain values

9

Need to know about
convolutions
• We need to have band limited signals

– Need low pass filters
– Which are implemented as convolutions

R t ti i l filt i• Reconstruction requires low-pass filtering
– Which is implemented as convolution

• Need to see Sampling theory in Fourier
domain
– Need convolution

• Convolution is the mathematical

Convolution

• Multiplication in frequency is convolution in
time (space)

C l ti i th li ti f• Convolution is the generalization of
averaging

• Continuous convolution
Discrete convolution

Convolution

• Operator on 2 signals
– f(t) * g(t) (f and g are both signals)

S ifi ll• Specifically
– One signal is “our signal”
– The other is the filter (called a kernel)

Filtering in the Spatial Domain

• Filtering the spatial domain is achieved by
convolution

∫
∞

∞−
−=⊗= duuxgufgfxh)()()(

• Qualitatively: Slide the filter to each position,
x, then sum up the function multiplied by the
filter at that position

Discrete Convolution

• h(t) = (f*g)(t) = SUM f(i) g(t-i)
– Notice that we flip g backwards as we slide it
– Often g is symmetric, so this is easy to forget

• g = [1 2] f = [1 3 1 2 0] (outside range is
0)

• Zero centering of g ([1/3 1/3 1/3])
– Weighted average

Dealing with boundaries

• Pretend data outside boundaries is 0
– Dims edges

• Reflect about ends
• Keep constant values at edges
• Renormalize kernel

10

Convolution in 2D

• Show box moving around

• Seperable filters
– Can do as 1D convolution in both directions
– Not all filters can do this
– Useful to find ones that can

Reconstruction in Practice

• Sample a sample – no problem!
• Issue is samples between samples

• Theory: LPF a spike chain
– Convolve “resonstruction kernel” with samples
– Only really need to evaluate at places where

you’ll sample

• Another view: interpolation
– Different interpolations are different filters

Some reconstruction kernels
Crude approximations to LPF

Constant Triangle
(Bartlet)

Interpolating
Cubic
(Catmull-Rom)

Spacing (1 unit = sample distance)

Scaling issues

Interpolating (non-interpolating kernels exist as well)

Approx to Ideal LPF

Reconstruction Example

• Sample at sample

• Could do this as linear
interpolation
– Generalizes nicely this way

• Need to evaluate filter for
i lSample at sample

• Sample between samples

• Bartlett filter
– Width correct for sample

spacing

• See how we get linear
interpolation

various values

• Convolve reconstruction
kernel with sampling kernel
(LPF for frequency limit)

• Easier ways to implement
nearest neighbor

• Choose different samples of the same image

Re-Sampling

1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 9

• Resizing is a special case
– Scale image down (and have same sample rate)
– Keep image the same size (but new sample

rate)
• General Version:

– (x,y) = F (x,y) Rn->Rn

– Called a warp – could be anything

The obvious problems

• New samples in between old samples
– Need to interpolate

• New sampling rate too low for signal
Mi ht li d t filt– Might alias – need to pre-filter

11

Re-Sampling in Theory

• Reconstruct (get the continuous signal)
• Filter (to make sure band limited for

sampling)
S l• Sample

• Note that we apply 2 low-pass filters
• Once HF are cut, no need to repeat
• Can pick the one that has lowest cutoff

Re-Sampling

• Need to reconstruct and sample
• f*g*h = f*(g*h) (can put the filters together)

– Order you do things in doesn’t matter

• If new sample rate is higher – old signal is
sufficiently bandpassed, just reconstruct

Upsampling, enlarging, …
• If new sample rate is lower – need to pre-

filter
Do pre filtering first (since its discrete)

Re-Sampling in Practice

• No need to create continuous signal
– How would we represent it?

C l filt i ith d• Can apply filters in either order
– Blur (LPF) to remove HF (if necessary)
– Interpolate (LPF) to find values of samples

• Only compute things at the samples
– Don’t compute the convolution at all places
– Use one filter that does both

Why pre-filter?

• Consider triangle [0 1 2 3 2 1 0 …]
– Warning! Not band passed, will alias no matter

what
• Downsample by 2

– (twice as fast, half as many samples)
– Just pick every other sample

• Is this a resampling kernel?
– Yes – it is any interpolating kernel – if you

sample at the sample, you get the sample
– Not all reconstruction kernels are interpolating,

Downsampling the triangle
• 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0

• every other (1/2 sample rate, speed up/shrink by factor of 2)
• 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0
• 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1

• every third (1/3 sample rate, speed up/shrink by factor of 3)
• 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0
• 1 2 1 2 1 2 1 2 1 2 1 2 1 2

• every forth (1/4 sample rate, speed up/shrink by factor of 4)
• 0 2 2 0 2 2 0 2 2 0 2
• 1 1 3 1 1 3 1 1 3 1 1
• (notice that this looks just like every other)

• every firth (1/5 sample rate, speed up/shrink by factor of 5)
• 0 1 2 3 2 1 0 1 2
• 1 0 1 2 3 2 1 0 1
• (notice that this looks just like the original!)

What kernel to use?

• LPF (and LPF-like) filters look like bumps
– Width of bump is inversely proportional to cutoff
– Shape of bump says how closely approximates

LPFLPF
– Normalize width to sampling rate

Sinc = sin(x)/x = ideal LPF Tent

12

How wide a bump?

• Wide enough to cover between original
samples
– Otherwise, won’t have enough to interpolate

• Equivalent to the reconstruction filter cutoffEquivalent to the reconstruction filter cutoff
frequency

1 2 3 4 5 6 7 8 9

Too narrow – you miss stuff Wide enough

How wide for Pre-Filtering

• Needs to be wide enough that you don’t
miss any original samples when you try the
new samples

• This is the cutoff from the resampling filterWid h hi i d!• This is the cutoff from the resampling filter

1 2 3 4 5 6 7 8 9

1 2 3 4 5

Too narrow – miss stuff
ALIASING!

Wide enough – nothing missed!

One filter for resampling

• Only one of the limits will be the lowest – use
that one

Wh t b ti (t bi• Why not be conservative (use an extra big
filter)?
– Cuts out too much stuff
– Removes too much details
– Looks blurry

• Things are easier if your samples are

What filters?

• Filters need to be normalized (so they sum
to 1)

• Since we’re sampling them, renormalize
AFTER samplingp g

• Interpolating – must be one at the sample
– Must be zero at the other samples
– Must sum to zero at the other samples
– Generally, have negative lobes (ringing)

• But a real LPF will ring

• Reconstruction filters – generally use

A note on “support”

• Bump width is not the same as support!
• Ideal LPF has infinite support
• Wider the support, more info to use

Gallery of filters

• Box
• Tent
• B-Spline
• Gaussian
• Lanczos

• Differ in how closely they approximate LPF
– Get rid of lower frequencies accidentally
– Let in high frequencies accidentally

Ph hift

13

Some good filters

• B-Splines
– Repeated convolution of the unit box
– ½ [1 1] (keep convolving with this)

¼ [1 2 1]– ¼ [1 2 1]
– 1/8 [1 3 3 1]
– 1/16 [1 4 5 6 1]

• Wider (bigger) filter = lower frequency limit
• Pick something so overlap at new samples

– (e.g. the 3 wide one is good for downsample by
2)

Gaussian Filter

• Attenuates high frequencies even further
• In 2d, rotationally symmetric, so fewer

artifacts
0.18 0. 18

-0. 02

0.03

0.08

0.13

-0. 02

0. 03

0. 08

0. 13

2

2

2
1 x

e
−

π

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

14641
41624164
62436246
41624164
14641

256
1

Lanczos (windowed sinc)

• Chop off far away lobes
• Renormalize
• Chop to preserve derivatives

Simple example

• Have signal [1 2 1 3 1 2 1]
• Resample @ a rate 2.5 times the original

• Pick the filters?
– Bartlett (tent) filter = linear interpolation
– B-Spline ¼ [1 2 1] = common choice (probably not “big” enough)

• Implement?
– First do the pre-filter, then use the tent at the samples
– Figure out which samples you need for Bartlet, compute those using

B-Spline
– Use the continuous B-Spline and sample
– Only need a small set of phases

In 2D

• Everything in 1D extends to ND – just hard to draw
• 2D convolution

– Kernel is a 2D function, or a matrix in the discrete case
– Slide around in 2D
– Centered, Boundaries

• Seperability
– Some operations can be done in 1 dimension, then the

other
– Sampling can be
– Filtering can be – if the kernel is seperable

If there’s time…
(or things to try at home)

• Show the need for a fixed set of phases for
reconstruction kernels

Sh 2D B S li• Show 2D B-Splines
• Do a 2D resampling example

14

Filtering Images

• Work in the discrete spatial domain
• Convert the filter into a matrix, the filter mask
• Move the matrix over each point in the

i lti l th t i b th i limage, multiply the entries by the pixels
below, then sum
– eg 3x3 box filter
– Effect is averaging

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

111
111
111

9
1

Box Filter

• Box filters smooth by averaging neighbors
• In frequency domain, keeps low frequencies and attenuates

(reduces) high frequencies, so clearly a low-pass filter

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

111
111
111

9
1

Spatial: Box Frequency: sinc

Filter Widths

• Fourier Transform of a Time scaling:
– f(k t) -> F(1/k omega)
– As time gets scaled, frequency gets scaled by

the inversethe inverse
• Box filter: wider box in frequency domain =

narrower filter in time domain

• To filter higher frequencies use a narrow (in
time/space) filter

• Lower Frequency cutoff (in a High-pass

Handling Boundaries

• At (0,0) for instance, you might need pixel
data for (-1,-1), which doesn’t exist

∑ ∑
−= −=

++++=
2/

2/

2/

2/

]2/][2/[]][[]][[
k

ki

k

kj
inputoutput kjkiMjyixIyxI

• Option 1: Make the output image smaller –
don’t evaluate pixels you don’t have all the
input for

• Option 2: Replicate the edge pixels
– Equivalent to: posn = x + i; if (posn < 0) posn =

0; and so on for other indices
• Option 3: Reflect image about edge

E i l t t + i if (< 0)

Seperable Filters

• Some 2D filters can be implemented as 2 1D
filters

E h di i t ti• Each dimension at a time

• Much easier
– Don’t need to build 2D filter kernel
– Much faster (O(mn) not O(m^2 n))

• Box filters are seperable

Constructing Masks: 2D

• Multiply 2 1D masks together using outer
product][][]][[jmimjiM =

0.2 0.6 0.2

• M is 2D mask, m is 1D mask
0.2

0.6

0.2

0.04 0.12 0.04

0.120.360.12

0.04 0.12 0.04

15

Bartlett Filter

• Triangle shaped filter in spatial domain
• In frequency domain, product of two box

filters, so attenuates high frequencies more
than a box ⎤⎡ 12321than a box

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

12321
24642
36963
24642
12321

81
1

Spatial: Triangle (Box⊗Box) Frequency: sinc2

Constructing Masks: 1D

• Sample the filter function at matrix “pixels”, then normalize
• eg 2D Bartlett

1 3 1
1
5

• Can go to edge of pixel or middle of next: results are
slightly different

0 1 2

1 2 1
1
4

0 1 2

Gaussian Filter

• Attenuates high frequencies even further
• In 2d, rotationally symmetric, so fewer

artifacts
0.18 0. 18

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

14641
41624164
62436246
41624164
14641

256
1

-0. 02

0.03

0.08

0.13

-0. 02

0. 03

0. 08

0. 13

2

2

2
1 x

e
−

π

Constructing Gaussian Mask

• Use the binomial coefficients
– Central Limit Theorem (probability) says that

with more samples, binomial converges to
Gaussian1 2 1

1
4 1 14

1 4 6
16
1

4 1

1 6 15
64
1

20 15 6 1

1 1
1 2 1
1 3 3 1

1 4 6 4 1

Sampling Theory

• Sampling is multiply by
spike chain in time domain
– Fourier transform of spike

chain is spike chain
– Fourier transform of multiply

is convolutionis convolution
• Sampling is convolution by

spike chain in frequency
• Makes infinite copies of

signal
• Reconstruction low-pass

filters to remove all but one
• Non-band limited, things

“spill”

Sampling / Reconstruction

• Both sampling and reconstruction require
Low Pass Filtering

• Sampling:
– Low pass filter signal to make sure is band-

limited
• Reconstruction:

– Low pass filter spike chain to figure out what
happens between samples

• Resampling:

16

Resizing = Resampling

• Same image – different number of samples

• Issues:
– New samples are in between old samples
– Too few new samples to capture all the

frequency

• Basic idea (in theory)
– Reconstruct original signal (LPF the samples)
– Low-pass filter (so sampling works)

Resampling – Little Square
Model
• Region of source = Region of Dst

• Pixel is a region
– Dest region might be bigger than pixel in source
– Average over the region (convolution gives us

the weights)
• In-between pixels is piecewise constant

– Chunky look is what the model says is right

Pre-Filtering

• If SRC is bigger than DST it may have HF
– If its close, might need it anyway because of

imperfect reconstruction
• Need to LPF

• LPF before sampling?
– Requires you to do a complete reconstruction
– Only really need to do it at points you will

sample
• Pre-Filtering

– Do LPF before reconstruction / as part of

Reconstruction in Practice

• Sample a sample – no problem!
• Issue is samples between samples

• Theory: LPF a spike chain
– Convolve “resonstruction kernel” with samples
– Only really need to evaluate at places where

you’ll sample

• Another view: interpolation
– Different interpolations are different filters

Some reconstruction kernels

Constant Triangle
(Bartlet)

Interpolating
Cubic
(Catmull-Rom)

Spacing (1 unit = sample distance)

Scaling issues

Interpolating (non-interpolating kernels exist as well)

Approx to Ideal LPF

Reconstruction Example

• Sample at sample

• Could do this as linear
interpolation
– Generalizes nicely this way

• Need to evaluate filter for
i lSample at sample

• Sample between samples

• Bartlett filter
– Width correct for sample

spacing

• See how we get linear
interpolation

various values

• Convolve reconstruction
kernel with sampling kernel
(LPF for frequency limit)

• Easier ways to implement
nearest neighbor

17

Functional Form for Filters

• Consider the Bartlett in 1D:

• To apply it at a point xorig and find the
contribution from point x where the

w/2-w/2 0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

w
s

w
sHw

2
12)(

contribution from point x where the
image has value I(x)

• Extends naturally to 2D:

)(
2

12)(xI
w

xx
w

xf c
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

),(
2

1
2

14),(2 yxI
w

yy
w

xx
w

yxf cc
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−=

General Resampling

• Could be any transformation on x,y
• X’,y’ = f(x,y)

• Scale, translate, rotate, something weird

• Kernel should get warped too
– Little square -> some weird shape
– Little circle/square (of kernel) -> some weird

shape
– In practice stick with squares

Reverse Warping

• Note we generally need the INVERSE:
– X’, y’ = f(x,y) (x’ = dst, x = src)
– Know x’, need to find x is inverse

R i i i (h• Reverse warping is easier (scan over each
pixel in the dst, figure out where it comes
from)

• Forward warping is tricker
– Usually can invert function, but if you can’t
– Need to worry about holes

• Lots of fun warps to do!

