Notes on Sampling (L3-...)

What is a pixel

- One of these finite measurements
- At a particular position
- Point sample value at a specific place
 Infinitesimally small place
- Finite region of constant value (little square) – Doesn't actually model things better (inconsistent)

TT,

- Mathematically less convenient
- Useful for some thought experiments later on

A pixel is not a little square!

- Sensors average over region

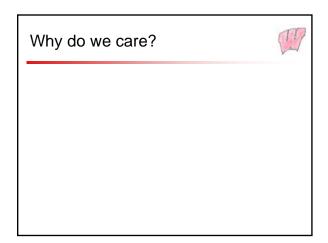
 Doesn't mean its really peicewise constant
 Don't really know what went on in the square
- Point Samples (paradoxically) fit better with the finite case (the buckets, screen dots)
 - Sensing estimation of what happens at the point from the neighborhood
 - Display neighborhood is created based on the points inside of it (splats, bleeding, ...)

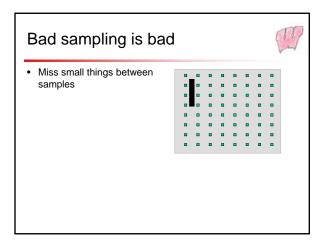
Point Sampling Has Problems Miss small things

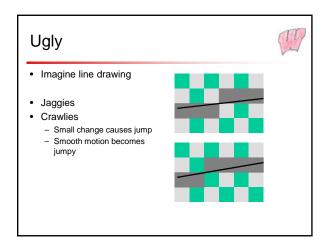
- Problem: discretization throws away information
- Don't know what happens between samples
- Sampling loses information you cannot get back the information once its lost!

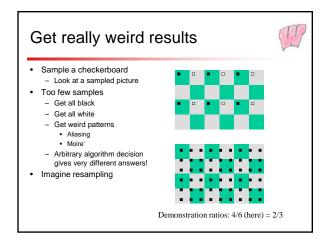
Aliasing

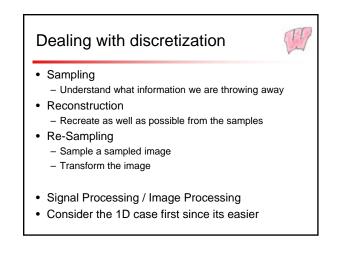
- W
- Technical term for sampling problems
- If you lose information and "make it up" wrong, you get weird effects

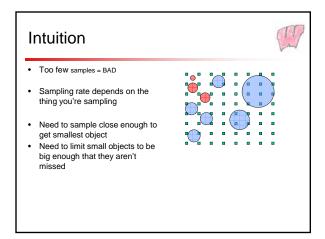


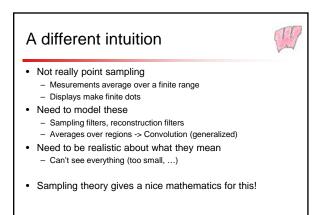


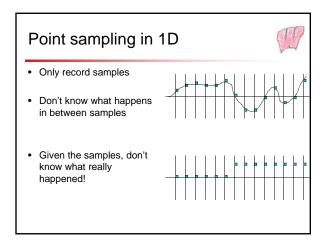


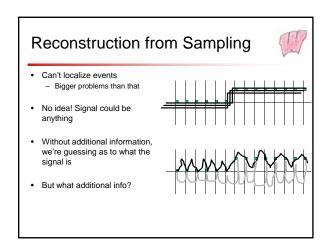








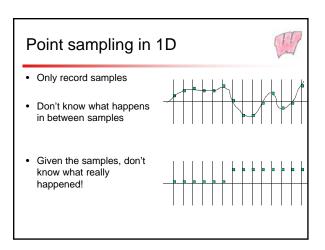


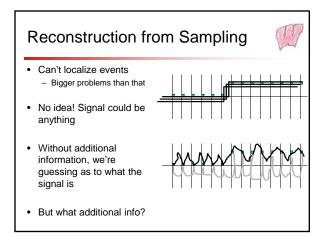


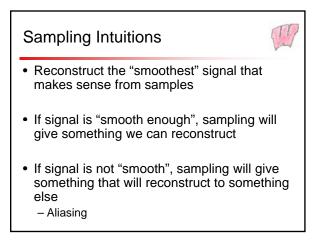
Sampling Intuitions

- Reconstruct the "smoothest" signal that makes sense from samples
- If signal is "smooth enough", sampling will give something we can reconstruct
- If signal is not "smooth", sampling will give something that will reconstruct to something else

 Aliasing
- But how do we define "smooth"





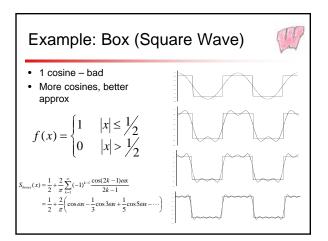


Signal processing

- Need better "language" for talking about signals
- · Idea: represent signals in a different way
- Up till now: time domain (graph against time)
 Good for asking "what does signal do at time X"
- New idea: frequency domain
 - Good for talking about how smooth signals are

Frequency Domain Fourier Theorem: Any periodic signal can be represented as a sum of sine and cosine waves with harmonic frequencies If one function has frequency *f*, then its harmonics are function with frequency *nf* for integer *n*Extensions to non-periodic signals later Also works in any dimension (e.g. 2 for images, 3, ...)

Example: box

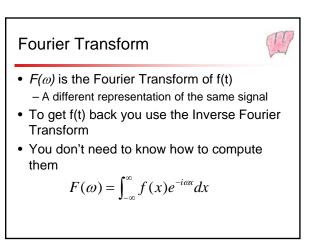


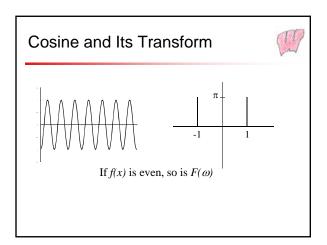
Intuitions

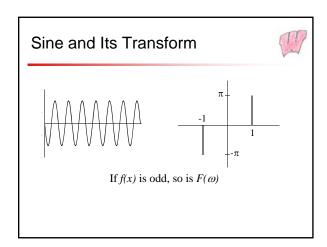
- Low frequencies are smooth

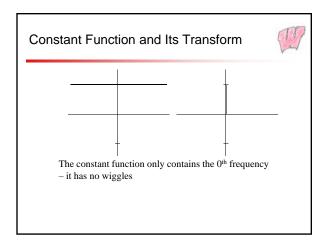
 High frequencies change fast, are not smooth
- If a signal can be made of only low frequencies, it is smooth
- If a signal has sharp changes, it will require high frequencies to represent

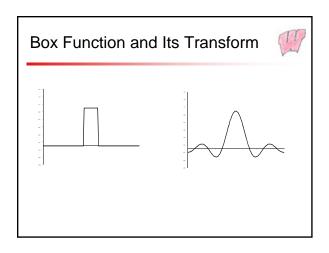


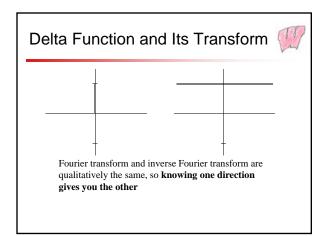


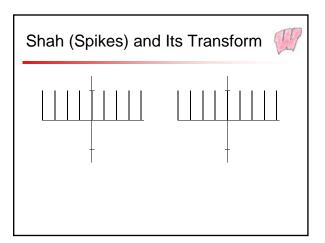


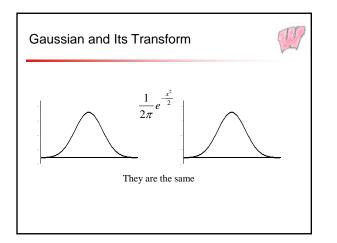


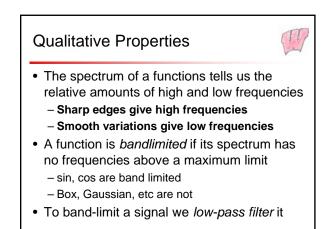


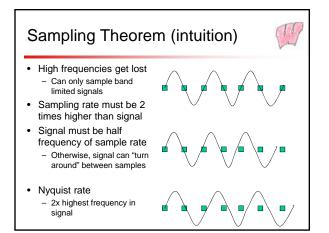


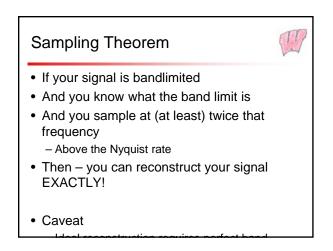


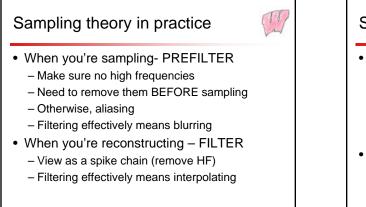












- There is exactly one band-passed signal that goes through those samples
- Where the band-pass is less than half the sampling rate
- Ideal reconstruction
 - View samples as spike chain, low-pass filter
 - Need an ideal low-pass filter
 - Approximate ideal low-pass filter

Sampling Theory (2)

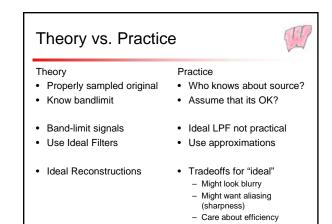
- If we sample a band-passed signal AND the sampling rate is > 2*highest freq THEN we can do ideal reconstruction
- If you know the highest frequencies you care about, you know how fast you need to sample!
 - CD Audio Example: human hearing isn't so great after 22Khz, so sample at 44.1Khz

Sampling Theory (3) If your signal is not bandpassed (i.e. has HF >= 2*sampling rate) THEN you will get aliasing when you sample Once you've aliased – you can't go back!

- You have no idea what the original was!
- Need to PREFILTER the signal before sampling to make it bandpassed

Filtering: Convolutions

- A general filter is a function on an image that produces another image
- Many common filters are simpler in the Fourier domain
- Choice:
 - Transform image, filter, inverse transform image
 - Inverse transform operator, apply in spatial domain



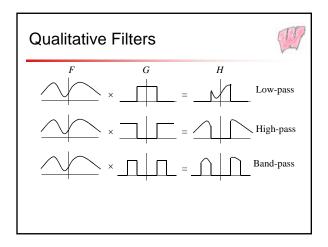
What is a filter anyway?

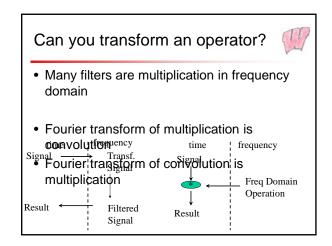
- Frequency filters

 Add remove different frequencies
- Multiplication in frequency means CONVOLUTION in time/space
- Continuous and Discrete Convolutions

Filters

- A *filter* is something that attenuates or enhances particular frequencies
- Easiest to visualize in the frequency domain, where filtering is defined as multiplication: $H(\omega) = F(\omega) \times G(\omega)$
- Here, *F* is the spectrum of the function, *G* is the spectrum of the filter, and *H* is the filtered function. Multiplication is point-wise





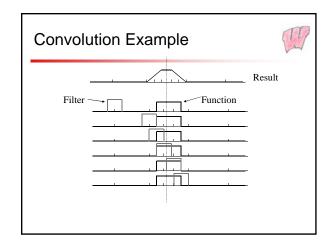
Filtering in the Spatial Domain

11

• Filtering the spatial domain is achieved by convolution

$$h(x) = f \otimes g = \int_{-\infty}^{\infty} f(u)g(x-u)du$$

• Qualitatively: Slide the filter to each position, *x*, then sum up the function multiplied by the filter at that position



Convolution TheoremWh• Convolution in the spatial domain is the
same as multiplication in the frequency
domain• Get
and• Take a function, f, and compute its Fourier
transform, F• Sp
• Take a filter, g, and compute its Fourier
transform, G• Compute $H=F\times G$
• Take the inverse Fourier transform of H, to get h
• Then $h=f\otimes g$ -

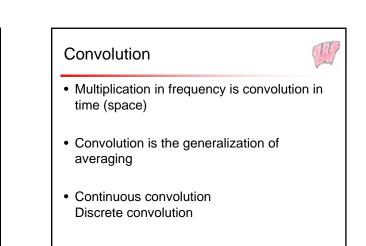
- Multiplication in the spatial domain is the
- come as convolution in the frequency

What's a filter?

- Generic an operation that maps a signal to another signal
- Specifically: a LOW-PASS filter
 - Attenuates high frequencies
 - Easy to describe in frequency domain (give frequency response)
 - Multiply certain values

Need to know about convolutions

- · We need to have band limited signals - Need low pass filters
 - Which are implemented as convolutions
- Reconstruction requires low-pass filtering - Which is implemented as **convolution**
- Need to see Sampling theory in Fourier domain
 - Need convolution
- Convolution is the mathematical



Convolution

- Operator on 2 signals (f and g are both signals) - f(t) * g(t)
- Specifically
 - One signal is "our signal"
 - The other is the filter (called a kernel)

Filtering in the Spatial Domain

· Filtering the spatial domain is achieved by convolution

$$h(x) = f \otimes g = \int_{-\infty}^{\infty} f(u)g(x-u)du$$

• Qualitatively: Slide the filter to each position, *x*, then sum up the function multiplied by the filter at that position

Discrete Convolution

Dealing with boundaries

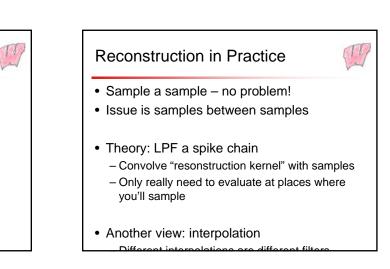
11,

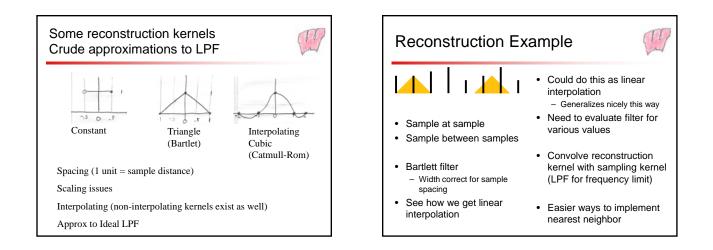
- · Pretend data outside boundaries is 0 Dims edges
- Reflect about ends
- · Keep constant values at edges
- Renormalize kernel

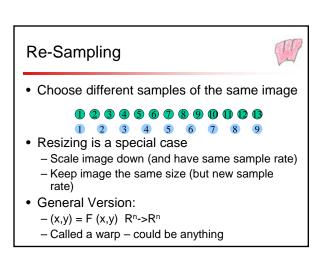
- - $h(t) = (f^*g)(t) = SUM f(i) g(t-i)$
 - Notice that we flip g backwards as we slide it - Often g is symmetric, so this is easy to forget
 - g = [12] f = [13120] (outside range is 0)
 - Zero centering of g ([1/3 1/3 1/3]) - Weighted average

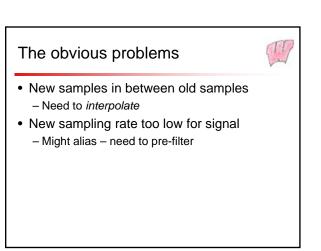
Convolution in 2D

- · Show box moving around
- · Seperable filters
 - Can do as 1D convolution in both directions
 - Not all filters can do this
 - Useful to find ones that can









Re-Sampling in Theory

- Reconstruct (get the continuous signal)
- Filter (to make sure band limited for sampling)
- Sample
- Note that we apply 2 low-pass filters
- Once HF are cut, no need to repeat
- · Can pick the one that has lowest cutoff

Re-Sampling

TI,

TI

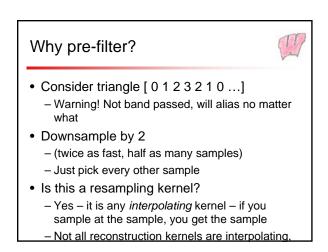
- Need to reconstruct and sample
- f*g*h = f*(g*h) (can put the filters together)
 Order you do things in doesn't matter

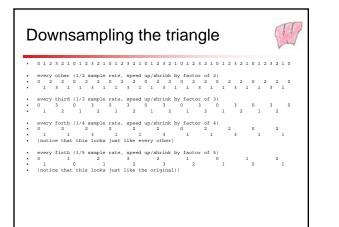
IT,

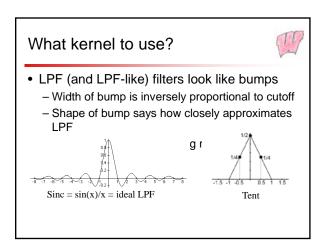
- If new sample rate is higher old signal is sufficiently bandpassed, just reconstruct Upsampling, enlarging, …
- If new sample rate is lower need to prefilter

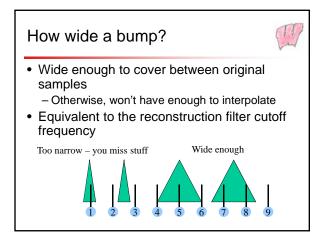
Re-Sampling in Practice No need to create continuous signal How would we represent it?

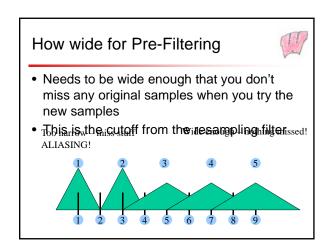
- Can apply filters in either order – Blur (LPF) to remove HF (if necessary)
 - Interpolate (LPF) to find values of samples
- Only compute things at the samples – Don't compute the convolution at all places
 - Use one filter that does both

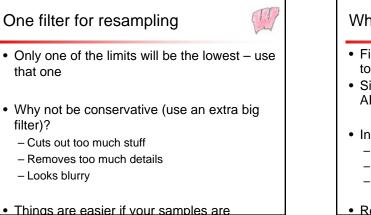


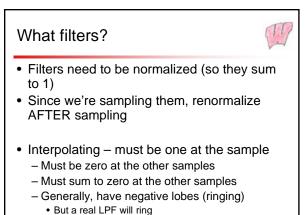


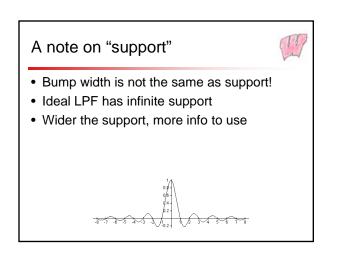


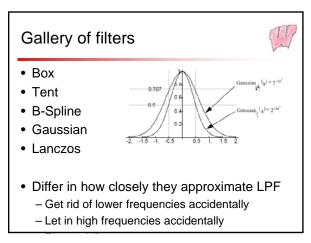


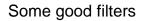








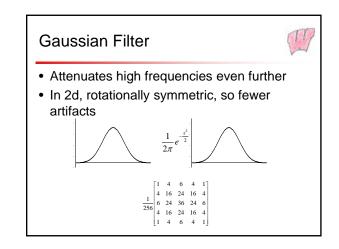


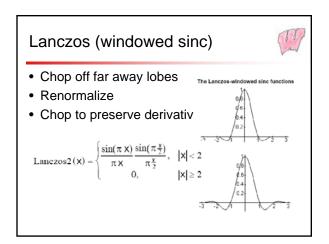


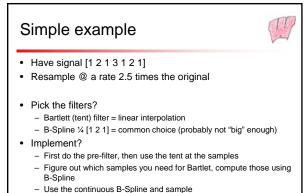
• B-Splines

- Repeated convolution of the unit box
- $-\frac{1}{2}$ [1 1] (keep convolving with this)
- ¼ [1 2 1]
- 1/8 [1 3 3 1]
- 1/16 [1 4 5 6 1]
- Wider (bigger) filter = lower frequency limit
- Pick something so overlap at new samples

 (e.g. the 3 wide one is good for downsample by 2)







Only need a small set of phases

In 2D

T

TT,

- Everything in 1D extends to ND just hard to draw
- 2D convolution
 - Kernel is a 2D function, or a matrix in the discrete case
 Slide around in 2D
 - Centered, Boundaries
- Seperability
 - Some operations can be done in 1 dimension, then the other
 - Sampling can be
 - Filtering can be if the kernel is seperable

If there's time… (or things to try at home)

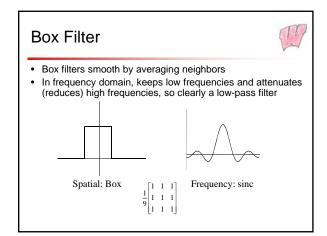
- Show the need for a fixed set of phases for reconstruction kernels
- Show 2D B-Splines
- Do a 2D resampling example

Filtering Images

- Work in the discrete spatial domain
- Convert the filter into a matrix, the filter mask

1 1 1

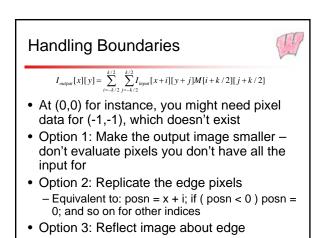
- Move the matrix over each point in the image, multiply the entries by the pixels below, then sum
 - eg 3x3 box filter
 - Effect is averaging



Filter Widths

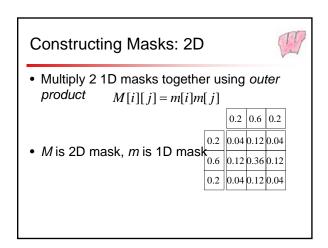
TI,

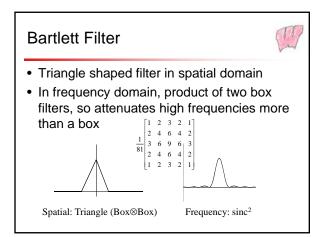
- Fourier Transform of a Time scaling:
 f(k t) -> F(1/k omega)
 - As time gets scaled, frequency gets scaled by the inverse
- Box filter: wider box in frequency domain = narrower filter in time domain
- To filter higher frequencies use a narrow (in time/space) filter
- Lower Frequency cutoff (in a High-pass

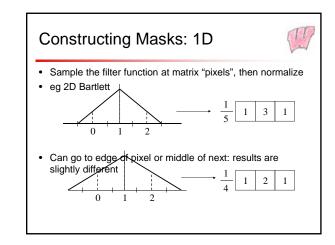


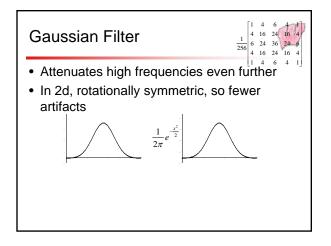
Seperable Filters

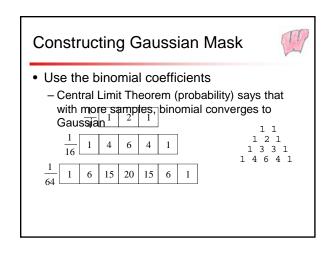
- Some 2D filters can be implemented as 2 1D filters
- Each dimension at a time
- Much easier
 - Don't need to build 2D filter kernel
 - Much faster (O(mn) not O(m^2 n))

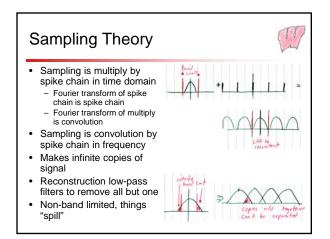


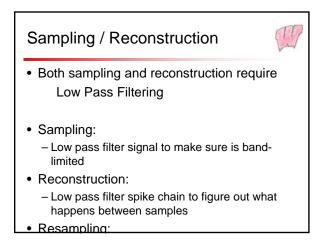












Resizing = Resampling

- Same image different number of samples
- Issues:
 - New samples are in between old samples
 - Too few new samples to capture all the frequency
- Basic idea (in theory)
 - Reconstruct original signal (LPF the samples)
 Low-pass filter (so sampling works)

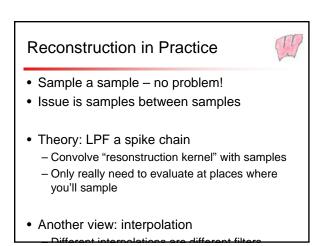
Resampling – Little Square Model

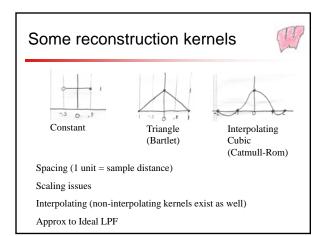
- Region of source = Region of Dst
- · Pixel is a region
 - Dest region might be bigger than pixel in source
 - Average over the region (convolution gives us the weights)
- · In-between pixels is piecewise constant
 - Chunky look is what the model says is right

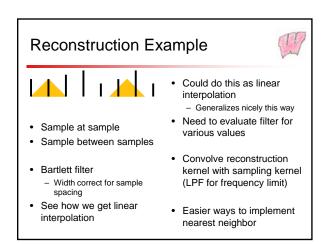
Pre-Filtering

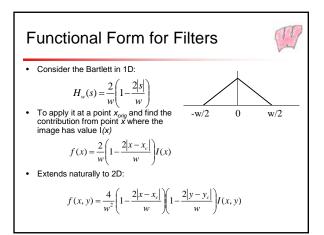
- If SRC is bigger than DST it may have HF

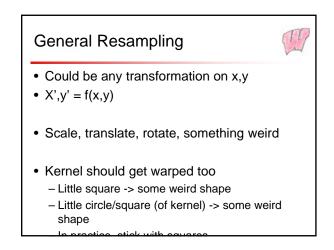
 If its close, might need it anyway because of
 imperfect reconstruction
- Need to LPF
- LPF before sampling?
 - Requires you to do a complete reconstruction
 - Only really need to do it at points you will sample
- Pre-Filtering
 - Do LPF before reconstruction / as part of











Reverse Warping

- Note we generally need the INVERSE:
 X', y' = f(x,y) (x' = dst, x = src)
 Know x', need to find x is inverse
- Reverse warping is easier (scan over each pixel in the dst, figure out where it comes from)
- · Forward warping is tricker
 - Usually can invert function, but if you can't
 - Need to worry about holes
- Lots of fun warps to do!