

Is RGB good enough?

- Need to understand why
- Sortof - gets close to all colors
- Need better gamut
- No
- Inconvenient for talking about color
- Perceptually non-linear
- Inconsistencies in what RGB means = no matching
- Can't get really vivid colors
- Purples are particularly bad
- Can't be RGV - since violet sensitivity isn't good
- Old film had different gamuts
- Robin hood in technicolor

Return to Color

- Took color for granted (assumed RGB)
- Color
- Quality of Light
- Has a wavelength - not just an amount
- Each photon has a wavelength
- Lots of photons = spectra of frequencies
- Can measure the spectrum of light
- Graph wavelength vs. amount at the measurement
- Different spectra give different "color impressions"

Colors

- One dominant wavelength = pure color
- No dominant wavelength = "white" (or black/gray)
- What do we perceive?
- Luminence (amount of light)
- Color (dominant)
- Purity of Color
- Complications
- Differences in perception
- Artist notions vs. physics vs. psychology

Sensing Color

- Different sensors have different sensitivities
- Spectrum of sensor
- Convolution with spectrum gives response
- Ideal photo sensor / real photo sensor
- Cameras - wide range sensor
- Put filters in front of each CCD element
- Different parts of spectra (R,G,B)
- Bayer Mosaic (need to interpolate)
- Foveon

Color Vision in Animals

- Rods = all the same
- No color vision
- Cones = have different kinds
- 1-chromat (can't see color) -> Dogs
- bi-chromat (2 different types) -> large mamals
- Tri-chromat -> humans ***
- Color blindness = lack of 1 type
- Rare genetics condition gives a $4^{\text {th }}$ type
- Some birds have 4 or 5 types of cones
- Ducks\&Pigeons have 5, European starlings have 4

Distinguishing colors

- 1 sensor
- All colors look the same
- Combination of colors looks like any color
- Metamers - perceptually indistinguishable
- 2 sensors
- Non-overlap case (what differences?)
- Overlap case
- Middle vs. combination of sides

Faking Colors

- Metamers allow for faking - 2 cones $=2$ frequencies
- Two different overlapping cones respond
- Some of each color?
- Some of the in-between color
- Colors outside of overlap can't be faked
- Can fake responses using N "point" colors

Gamut

- The range of colors that a device can represent - Perceptual range
- Device only shows some primaries
- Can only fake some colors

Different Sensitivities

- Convert to gray requires scaling for sensitivities
- $\mathrm{R}=0.212671$ * Y
- $G=0.715160$ * Y
- $B=0.072169$ * Y .

Before we go on...
What RGB means for this class

- We'll do everything in RGB
- Can think about an image as 3 separate images - Intensity for R, for G, for B
- Could store as 3 separate images RRRRR, GGGG
- Could store RGBRGBRGBRGB
- Generally do the latter
- Analogy with film (3 layers vs. 1 layer)
- $4^{\text {th }}$ color isn't a color - its alpha, transparency - More on that next time

How do we talk about color?

- Want to understand the gamut of displays
- Want to compare displays
- Want to understand limits of RGB

Limits of Color

- Limits on the colors you can see
- Since some things will be equivalent
- Limits on the colors you can display
- Color matching
- Try to give the same perceptual experience
- Problems:
- All displays are going to be different
- Different displays have different limits

How much color can you see

- Assuming trichromatic (not color blind)
- Each type of cone gives a response
- Range of sensation is 3D
- Imagine a color system with 3 primaries
- Each exactly corresponds to one type of cone
- Amounts of each light = amounts of response
- Color space is exactly perceptual

Tristimulus color spaces

- Good news: directly lets us describe all colors we can see (and only those colors)
- Bad news, not physically realizable
- Because of cone overlap
- Need negative amounts of light
- Positive in main hump
- Negative to cancel out others

- "Imaginary" light sources, good for analysis

Imaginary Primaries

- Can we excite just one type of cone?
- No - there is overlap
- Yes - shine 1 positive and 1 negative wavelength
- Really need multiple wavelengths to do it
- No - there's no such thing as negative light
- That's why these are IMAGINARY primaries
- This is a thought experiment for analysis
- Could make LMS primaries (for LMS cones)
- But want to separate color from brightness

Perceptual Color Space

- Choose 3 primaries that do span human vision
- Complete Gamut - can recreate any color
- Not physically realizable (since has negative energies)
- CIE XYZ
- Y is "lightness" - intensity w/o color
$-X Z$ are color directions
- Look at 2D slices of constant brightness (since we're just worried about color)
$-x=X /(X+Y+Z), y=Y /(X+Y+Z), x+y+z=1$ (e.g. constant Y)

Determining Gamuts

- Gamut: The range of colors that can be represented or reproduced
- Overall range of colors has weird "tongue" shape (since xyz must be positive)
- Plot the matching coordinates for each primary. eg R, G, B
- Region contained in triangle (3 primaries) is gamut
- Really, it's a 3D thing, with the color cube distorted and embedded in the XYZ gamut

Gamut Analysis

- Space of colors a device can reproduce depends on primaries
- Device reproduce linear combinations of primaries = space inside of points
- Different devices have different ranges
- Print with more inks
- Films with different

formulations

Other Color Systems: YCC

- $\mathrm{Y}=$ Luminence
- Could be R+G+B
- Better to be $.3 \mathrm{R}+.6 \mathrm{G}+.1 \mathrm{~B}$
- Redundant - so send just 2 colors
- Or send color differences: Y-R, Y-G
- Why?
- Video: luminance is most important, subsample chroma
- Perceptually more uniform since corrected for sensitivity
- Start to separate color (direction in 2D)

Subtractive Color

- Printers combine inks that filter light
- Remove colors
- So far additive
- Black + red + green = yellow
- Ink is subtractive
- White - red = cyan, White-green=magenta, whiteblue=yellow
- Use "subtractive primaries"
- Cyan, Magenta, Yellow

Artist - Centric Systems

- Hue = "name" of color
- Red, orange, yellow, ...
- Color wheel
- Complements add up to white
- Saturation = purity
- Value = luminence
- HSV (hexcone) vs. HLS (double hexcone) - RGB Color Cube viewed from the end
- Cone shape
- Value is zero, hard to talk about color
- More convenient way to talk about color (for artists)

Where color gets messy...

- Color reproduction is hard
- When you see something on a monitor, does it look like the real thing? (shopping)
- When you buy a real object?
- When you print it?
- How do you make sure that what your camera sees is what you see on the screen is what you see when you print?
- How do you interpret RGB?
- Color Management
- Turns out to be a nightmare since each piece doesn't know what the other parts of the end-to-end chain are going to do
- Often assume monitor is cheap, adjusted wrong, ...

