Written Assignment 2 Solution

1A) $a=0, d=0$
1B) $\mathrm{C}=1 /$ sqrt(2) or $-1 /$ sqrt(2)
1C) $e=-1 / \operatorname{sqrt}(2), f=1 / \operatorname{sqrt}(2)$

2A) $x=\operatorname{sqrt}(3) / 2,-\operatorname{sqrt}(3) / 2$
$y=0$
$z=-1 / 2,+1 / 2$
3) Most of you got it right this time but I guess some are still confused. I think I should rephrase what I said in the last homework solution - " $V^{\prime}=A * B * C * V=A *(B *(C * V))$ where A, B, C are transformations that occur in that order" - order here refers to their order in the opengl code. So A occurs first in the CODE followed by B and then C. But what OpenGL does is multiply the input vertices with C first then B then A.

For this question we need opengl to first multiply the origin with M (modeling transformation) then C (camera transformation) and then P (projection transformation).

When I say multiply first with M and then C, P mean ($\mathrm{P} x(\mathrm{C} x(\mathrm{M} \mathrm{x} V)$)). This will give the correct answer for this question -
$[-3 ; 1 ; 1 ;-8]$ but we need to keep $w=1$ so divide by -8 . And the answer is -
$x=3 / 8$
$y=-1 / 8$
So now if you had to write this in OpenGl code you have to apply them in the reverse order - first P then C then M.
4) $e=(5,5,5)$
$t=(0,1,0)$
$g=(0,-5,-5)$
$\mathrm{w}=(0,1,1) / \operatorname{sqrt}(2)$
$u=(1,0,0)$
$\mathrm{v}=(0,1,-1) / \operatorname{sqrt}(2)$
Mcam $=\left[\begin{array}{llll}u & \text { v } & \text { e }\end{array}\right.$
$0 \quad 0 \quad 0 \quad 1$

