
559 Course Notes – 2010
Geometric Graphics

Mike Gleicher
October 2007

Notes for lectures, not shown in class

Lead-in

• Surveys, pictures, handin directories – wait
• Practice assignment due Weds 9/15

– Make a picture
– Gallery
– Mechanics

• Pictures from world vs. Pictures on screen
– Light picture, computer screen/window
– Toolkit vs. class

• Geometric vs. Image-based

Geometric graphics

• How do we draw shapes (What Shapes?)
• Primitives (simple shapes – build up bigger

ones)
– Points - Curves (later)
– Lines - Surfaces vs. Volumes
– Polygons

• 0d vs. 1d vs 2d vs. space embedded into
• Primitives in world vs. primitives on screen

Triangles as “The” primitive

• Vs. lines/points
• Vs. solids
• Vs. curves/surfaces

• In world vs. screen

• What to know?
– Position, 3D geometry (normal), Color/draw style

A little practical details - OpenGL

• Need to get a window, etc.
• Drawing context

• State oriented system
• Set “state” (color (RGB aside), style, …)
• Draw in current state

– Some ways around this

• Many ways to send triangles

Coordinate Systems

• What do positions mean?
– Need coordinate systems

• Tells us how to interpret positions (coordinates)
• In graphics we deal with many coordinate systems

and move between them
– Use what is convenient for what we’re doing

• Examples
– Chalkboard as coordinate system
– One panel of chalkboard as coordinate system
– Monitor as coordinate system

What is a coordinate system

• Position of the zero point
• Directions for each axis

– Represent points as a linear combination of vectors
– Vectors (basis) are axes
– Scale of vectors matter (what is “1 unit”)
– Directions matter (which way is up)
– Doesn’t need to be perpindicular (just can’t be parallel)

Describing Coordinate systems

• Need to have some “reference”
– Where we will measure from

• Give origin, vectors
• Once we have 1 system, can define others

• Can move points by changing their coordinate
system
– Piece of paper is a coordinate system
– Move piece of paper around
– If it were a rubber sheet could stretch it as well

Aside on OpenGL

• Normalized Device Coordinates
• Local coordinates
• World Coordinates?

• Detail: projected coordinates, multiple stacks
– later

Changing Coordinate Systems

• Changing coordinate systems allows us to change
large numbers of points all at once

• Need to move points between coordinate systems
– A coordinate system transforms points to a more

canonical coordinate system
– Can define coordinate systems by transformations

between coordinate systems

Transformations

• Something that changes points
– y’,y’ = f(x,y) f 2 R2 ! R2

• Coordinate systems are a special case

• Other examples
– F(x,y) = x+2, y+3
– F(x,y) = -y, x
– F(x,y) = x^2, y

• Easy way to effect large numbers of points

Interpreting Transformations

• Can be viewed as a change of coordinates
– What happens to a piece of graph paper?
– Just sometimes to a stretchy piece of paper

• View as a function applied to points

• Function composition
– F(g(h(x))) (note order)

X h g f X’

Linear Transformations

• Important special case – linear functions
• Can be written as a matrix x’ = M x (x is a vector)

• Good points
– Many useful transformations are of this form
– Composition by matrix multiply
– Easy analysis
– Straight lines stay straight lines
– Inverses by inverting the matrix

• Note: linear operators preserve zero!

Example Linear Operators

• Uniform Scale

• Non-Uniform Scale

• Reflect

• Skew

More linear operators

• Rotate

• Linear transformation (non-linear to determine
what Linear

• All of this keeps zero
• All linear operations are around the origin (?)

Understanding linear operators

• This is POST-Multiply (vector on the right)
– Pre-multiply convention works too
– All the matrices get transposed

• What does each element do?
– Left column – where does X axis go (put in unit X vector)
– Right column – where does Y axis go

• Can’t do anything about origin!

Post-Multiply vs. Pre-Multiply

• Post multiply – column vector on the left
F G H x

• Pre-multiply – row vector on the right
– Older convention, not used as often

xT HT GT FT

• I will (almost always) use the post-multiply
convention

Affine Transformations

• Translation = move all points the same (vector +)
• Affine = Linear operations plus translation
• Cannot be encoded in a 2x2 matrix (for 2d)

– Need six numbers for 2d
– Could be a 3x2 matrix – but then no more multiplies

• Rather than treat as a special case, improve our
coordinates a bit

Homogeneous Coordinates

• Big idea for graphics – really important
– Will be used for several things – translation is just 1

• Basic idea: add an extra coordinate
– 2D becomes 3D (3x3 matrices)
– 3D becomes 4D (4x4 matrices)

• Convert “back” from homogeneous coordinates by division
– (x,y) -> (x,y,1)
– (x,y,w) -> (x/w, y/w)

• Projection
– Many points in higher dim space = 1 point in lower dim space

• For now, just make w=1

Homogeneous Coordinates

• “Normal” space is a subspace
– W = 1

• Think about 1D case (so embed into 2D x,w)
• Many equivalent points (projection)

W=1

Only 1D Linear
operation is scale

(about origin)

Translation in Homogeneous Coords

• Translate in 2D = Skew in 3D
– Deck of cards

What about other linear ops

• Just add an extra coordinate
• Don’t change w (unless you know what you’re

doing)

Matrices as Coordinate Systems

• Where does X axis go?
• Where does Y axis go?
• Where does origin go?

• Assumes that bottom row is [0 0 1]

• Can you scale by changing w?
– Yes, but often we prefer to renormalize so bottom right

number is 1

Homogeneous Coordinates

• Makes translation (affine transforms) linear
• Need to work in higher dimensional space

• Useful for lots of other things
– Viewing (perspective)

Matrices as Coordinate Systems

• Where does X axis go?
• Where does Y axis go?
• Where does origin go?

• Assumes that bottom row is [0 0 1]

• Can you scale by changing w?
– Yes, but often we prefer to renormalize so bottom right

number is 1

Composing Transformations

• Order matters!
– Scale / rotate vs. rotate/scale

• Can implement by multiplying matrices
– T1 T2 T3 x = (T1 T2 T3) x

Why Compose?

• Rotate about a point
– Tc R T-c x

• Scale along an axis
– Move point to origin
– Align axis w/major axis
– Scale
– Put things back
– Tc Rθ S R-θ T-c x

Hierarchical coordinate Systems

• Car
– Wheel
– Wheel

• Person
– Head / Neck
– Arm / forearm / hand

Car

Wheel Wheel

T

body T T

T

T

R R

wheel wheel

Matrix Stack

• Multiply things onto the top
• Top is “current” coordinate system
• Push (copy the top) if you’ll come back
• Pop to go back

• Think about it as moving the coordinate system
• Top of stack is “current coordinate system”

– Where we will draw
• Transformations change current coord system

– Or change the objects that we are going to draw

Matrix Stack Example

• Draw Car = …. Push trans wheel pop …

• Push trans – draw car – pop push trans – draw car

	559 Course Notes – 2010�Geometric Graphics
	Lead-in
	Geometric graphics
	Triangles as “The” primitive
	A little practical details - OpenGL
	Coordinate Systems
	What is a coordinate system
	Describing Coordinate systems
	Aside on OpenGL
	Changing Coordinate Systems
	Transformations
	Interpreting Transformations
	Linear Transformations
	Example Linear Operators
	More linear operators
	Understanding linear operators
	Post-Multiply vs. Pre-Multiply
	Affine Transformations
	Homogeneous Coordinates
	Homogeneous Coordinates
	Translation in Homogeneous Coords
	What about other linear ops
	Matrices as Coordinate Systems
	Homogeneous Coordinates
	Matrices as Coordinate Systems
	Composing Transformations
	Why Compose?
	Hierarchical coordinate Systems
	Matrix Stack
	Matrix Stack Example

