559 Course Notes - 2010 Geometric Graphics

Mike Gleicher
October 2007
Notes for lectures, not shown in class

Lead-in

- Surveys, pictures, handin directories - wait
- Practice assignment due Weds 9/15
- Make a picture
- Gallery
- Mechanics
- Pictures from world vs. Pictures on screen
- Light picture, computer screen/window
- Toolkit vs. class
- Geometric vs. Image-based

Geometric graphics

- How do we draw shapes (What Shapes?)
- Primitives (simple shapes - build up bigger ones)
- Points - Curves (later)
- Lines - Surfaces vs. Volumes
- Polygons
- Od vs. 1d vs 2d vs. space embedded into
- Primitives in world vs. primitives on screen

Triangles as "The" primitive

- Vs. lines/points
- Vs. solids
- Vs. curves/surfaces
- In world vs. screen
-What to know?
- Position, 3D geometry (normal), Color/draw style

A little practical details - OpenGL

- Need to get a window, etc.
- Drawing context
- State oriented system
- Set "state" (color (RGB aside), style, ...)
- Draw in current state
- Some ways around this
- Many ways to send triangles

Coordinate Systems

- What do positions mean?
- Need coordinate systems
- Tells us how to interpret positions (coordinates)
- In graphics we deal with many coordinate systems and move between them
- Use what is convenient for what we're doing
- Examples
- Chalkboard as coordinate system
- One panel of chalkboard as coordinate system
- Monitor as coordinate system

What is a coordinate system

- Position of the zero point
- Directions for each axis
- Represent points as a linear combination of vectors
- Vectors (basis) are axes
- Scale of vectors matter (what is " 1 unit")
- Directions matter (which way is up)
- Doesn't need to be perpindicular (just can't be parallel)

Describing Coordinate systems

- Need to have some "reference"
- Where we will measure from
- Give origin, vectors
- Once we have 1 system, can define others
- Can move points by changing their coordinate system
- Piece of paper is a coordinate system
- Move piece of paper around
- If it were a rubber sheet could stretch it as well

Aside on OpenGL

- Normalized Device Coordinates
- Local coordinates
- World Coordinates?
- Detail: projected coordinates, multiple stacks
- later

Changing Coordinate Systems

- Changing coordinate systems allows us to change large numbers of points all at once
- Need to move points between coordinate systems
- A coordinate system transforms points to a more canonical coordinate system
- Can define coordinate systems by transformations between coordinate systems

Transformations

- Something that changes points
$-y^{\prime}, y^{\prime}=f(x, y) \quad f \in R^{2} \rightarrow R^{2}$
- Coordinate systems are a special case
- Other examples
$-F(x, y)=x+2, y+3$
$-F(x, y)=-y, x$
$-F(x, y)=x^{\wedge} 2, y$
- Easy way to effect large numbers of points

Interpreting Transformations

- Can be viewed as a change of coordinates
- What happens to a piece of graph paper?
- Just sometimes to a stretchy piece of paper
- View as a function applied to points
- Function composition
- $\mathrm{F}(\mathrm{g}(\mathrm{h}(\mathrm{x}))$) (note order)

Linear Transformations

- Important special case - linear functions
- Can be written as a matrix $\mathrm{x}^{\prime}=\mathrm{M} \mathrm{x}$ (x is a vector)
- Good points
- Many useful transformations are of this form
- Composition by matrix multiply
- Easy analysis
- Straight lines stay straight lines
- Inverses by inverting the matrix
- Note: linear operators preserve zero!

Example Linear Operators

- Uniform Scale
- Non-Uniform Scale
- Reflect

$$
\begin{aligned}
\operatorname{scale}(s) & =\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right] \\
\operatorname{nuscale}(s, t) & =\left[\begin{array}{ll}
s & 0 \\
0 & t
\end{array}\right] \\
\operatorname{reflect}(s, t) & =\left[\begin{array}{ll}
-1 & 0 \\
0 & 1
\end{array}\right] \\
\operatorname{skew}(a) & =\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]
\end{aligned}
$$

- Skew

More linear operators

- Rotate

$$
\operatorname{rotate}(\theta)=\left[\begin{array}{ll}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

- Linear transformation (non-linear to determine what Linear
- All of this keeps zero
- All linear operations are around the origin (?)

Understanding linear operators

$$
\mathbf{M x}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- This is POST-Multiply (vector on the right)
- Pre-multiply convention works too
- All the matrices get transposed
- What does each element do?
- Left column - where does X axis go (put in unit X vector)
- Right column - where does Y axis go
- Can't do anything about origin!

Post-Multiply vs. Pre-Multiply

- Post multiply - column vector on the left

F G H x

- Pre-multiply - row vector on the right
- Older convention, not used as often

$$
\mathbf{x}^{\top} \mathbf{H}^{\top} \mathbf{G}^{\top} \mathbf{F}^{\top}
$$

- I will (almost always) use the post-multiply convention

Affine Transformations

- Translation = move all points the same (vector +)
- Affine = Linear operations plus translation
- Cannot be encoded in a $2 x 2$ matrix (for 2 d)
- Need six numbers for 2d
- Could be a 3×2 matrix - but then no more multiplies
- Rather than treat as a special case, improve our coordinates a bit

Homogeneous Coordinates

- Big idea for graphics - really important
- Will be used for several things - translation is just 1
- Basic idea: add an extra coordinate
- 2D becomes 3D (3x3 matrices)
- 3D becomes 4D (4x4 matrices)
- Convert "back" from homogeneous coordinates by division
- (x, y) -> ($x, y, 1$)
- (x, y, w) -> ($x / w, y / w)$
- Projection
- Many points in higher dim space = 1 point in lower dim space
- For now, just make w=1

Homogeneous Coordinates

- "Normal" space is a subspace
$-\mathrm{W}=1$
- Think about 1D case (so embed into 2D x,w)
- Many equivalent points (projection)

Only 1D Linear operation is scale (about origin)

Translation in Homogeneous Coords

- Translate in 2D = Skew in 3D
- Deck of cards

$$
\operatorname{trans}(x, y)=\left[\begin{array}{lll}
1 & 0 & x \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]
$$

What about other linear ops

- Just add an extra coordinate
- Don't change w (unless you know what you're doing)

$$
\begin{aligned}
\operatorname{scale}(s) & =\left[\begin{array}{lll}
s & 0 & 0 \\
0 & s & 0 \\
0 & 0 & 1
\end{array}\right] \\
\operatorname{rotate}(\theta) & =\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Matrices as Coordinate Systems

- Where does X axis go?
- Where does Y axis go?
- Where does origin go?
- Assumes that bottom row is [llll 0011$]$
- Can you scale by changing w?
- Yes, but often we prefer to renormalize so bottom right number is 1

Homogeneous Coordinates

- Makes translation (affine transforms) linear
- Need to work in higher dimensional space
- Useful for lots of other things
- Viewing (perspective)

Matrices as Coordinate Systems

- Where does X axis go?
- Where does Y axis go?
- Where does origin go?
- Assumes that bottom row is [llll 0011$]$
- Can you scale by changing w?
- Yes, but often we prefer to renormalize so bottom right number is 1

Composing Transformations

- Order matters!
- Scale / rotate vs. rotate/scale
- Can implement by multiplying matrices
$-T_{1} T_{2} T_{3} x=\left(T_{1} T_{2} T_{3}\right) x$

Why Compose?

- Rotate about a point
$-T_{c} R T_{-c} x$
- Scale along an axis
- Move point to origin
- Align axis w/major axis
- Scale
- Put things back
$-T_{c} R_{\theta} S R_{-\theta} T_{-c} x$

Hierarchical coordinate Systems

- Car
- Wheel
- Wheel
- Person

- Head / Neck
- Arm / forearm / hand

Matrix Stack

- Multiply things onto the top
- Top is "current" coordinate system
- Push (copy the top) if you'll come back
- Pop to go back
- Think about it as moving the coordinate system
- Top of stack is "current coordinate system"
- Where we will draw
- Transformations change current coord system
- Or change the objects that we are going to draw

Matrix Stack Example

- Draw Car = Push trans wheel pop ...
- Push trans - draw car - pop push trans - draw car

