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Notes for lectures, not shown in class



Lead-in

• Surveys, pictures, handin directories – wait
• Practice assignment due Weds 9/15

– Make a picture
– Gallery
– Mechanics

• Pictures from world vs. Pictures on screen
– Light picture, computer screen/window
– Toolkit vs. class

• Geometric vs. Image-based



Geometric graphics

• How do we draw shapes (What Shapes?)
• Primitives  (simple shapes – build up bigger 

ones)
– Points - Curves (later)
– Lines - Surfaces vs. Volumes
– Polygons

• 0d vs. 1d vs 2d vs. space embedded into
• Primitives in world vs. primitives on screen



Triangles as “The” primitive

• Vs. lines/points
• Vs. solids
• Vs. curves/surfaces

• In world vs. screen

• What to know?
– Position, 3D geometry (normal), Color/draw style



A little practical details - OpenGL

• Need to get a window, etc.
• Drawing context

• State oriented system
• Set “state” (color (RGB aside), style, …)
• Draw in current state

– Some ways around this

• Many ways to send triangles



Coordinate Systems

• What do positions mean? 
– Need coordinate systems

• Tells us how to interpret positions (coordinates)
• In graphics we deal with many coordinate systems 

and move between them
– Use what is convenient for what we’re doing

• Examples
– Chalkboard as coordinate system
– One panel of chalkboard as coordinate system
– Monitor as coordinate system



What is a coordinate system

• Position of the zero point
• Directions for each axis

– Represent points as a linear combination of vectors
– Vectors (basis) are axes
– Scale of vectors matter (what is “1 unit”)
– Directions matter (which way is up)
– Doesn’t need to be perpindicular (just can’t be parallel)



Describing Coordinate systems

• Need to have some “reference”
– Where we will measure from

• Give origin, vectors
• Once we have 1 system, can define others

• Can move points by changing their coordinate 
system
– Piece of paper is a coordinate system
– Move piece of paper around
– If it were a rubber sheet could stretch it as well



Aside on OpenGL

• Normalized Device Coordinates
• Local coordinates
• World Coordinates?

• Detail: projected coordinates, multiple stacks
– later



Changing Coordinate Systems

• Changing coordinate systems allows us to change 
large numbers of points all at once

• Need to move points between coordinate systems
– A coordinate system transforms points to a more 

canonical coordinate system
– Can define coordinate systems by transformations 

between coordinate systems



Transformations

• Something that changes points
– y’,y’ = f(x,y)   f 2 R2 ! R2

• Coordinate systems are a special case

• Other examples
– F(x,y) = x+2, y+3
– F(x,y) = -y, x
– F(x,y) = x^2, y

• Easy way to effect large numbers of points



Interpreting Transformations

• Can be viewed as a change of coordinates
– What happens to a piece of graph paper?
– Just sometimes to a stretchy piece of paper

• View as a function applied to points

• Function composition
– F(g(h(x)))  (note order)

X h g f X’



Linear Transformations

• Important special case – linear functions
• Can be written as a matrix  x’ = M x (x is a vector)

• Good points
– Many useful transformations are of this form
– Composition by matrix multiply
– Easy analysis
– Straight lines stay straight lines
– Inverses by inverting the matrix

• Note: linear operators preserve zero!



Example Linear Operators

• Uniform Scale

• Non-Uniform Scale

• Reflect

• Skew



More linear operators

• Rotate

• Linear transformation (non-linear to determine 
what Linear 

• All of this keeps zero
• All linear operations are around the origin (?)



Understanding linear operators

• This is POST-Multiply (vector on the right)
– Pre-multiply convention works too
– All the matrices get transposed

• What does each element do?
– Left column – where does X axis go (put in unit X vector)
– Right column – where does Y axis go

• Can’t do anything about origin!



Post-Multiply vs. Pre-Multiply

• Post multiply – column vector on the left
F G H x

• Pre-multiply – row vector on the right
– Older convention, not used as often

xT HT GT FT

• I will (almost always) use the post-multiply 
convention



Affine Transformations

• Translation = move all points the same (vector +)
• Affine = Linear operations plus translation
• Cannot be encoded in a 2x2 matrix (for 2d)

– Need six numbers for 2d
– Could be a 3x2 matrix – but then no more multiplies

• Rather than treat as a special case, improve our 
coordinates a bit



Homogeneous Coordinates

• Big idea for graphics – really important
– Will be used for several things – translation is just 1

• Basic idea: add an extra coordinate
– 2D becomes 3D (3x3 matrices)
– 3D becomes 4D (4x4 matrices)

• Convert “back” from homogeneous coordinates by division
– (x,y) -> (x,y,1)
– (x,y,w) -> (x/w, y/w)

• Projection
– Many points in higher dim space = 1 point in lower dim space

• For now, just make w=1



Homogeneous Coordinates

• “Normal” space is a subspace
– W = 1

• Think about 1D case (so embed into 2D x,w)
• Many equivalent points (projection)

W=1

Only 1D Linear 
operation is scale

(about origin)



Translation in Homogeneous Coords

• Translate in 2D = Skew in 3D
– Deck of cards



What about other linear ops

• Just add an extra coordinate
• Don’t change w (unless you know what you’re 

doing)



Matrices as Coordinate Systems

• Where does X axis go?
• Where does Y axis go?
• Where does origin go?

• Assumes that bottom row is [0 0 1]

• Can you scale by changing w?
– Yes, but often we prefer to renormalize so bottom right 

number is 1



Homogeneous Coordinates

• Makes translation (affine transforms) linear
• Need to work in higher dimensional space

• Useful for lots of other things
– Viewing (perspective)



Matrices as Coordinate Systems

• Where does X axis go?
• Where does Y axis go?
• Where does origin go?

• Assumes that bottom row is [0 0 1]

• Can you scale by changing w?
– Yes, but often we prefer to renormalize so bottom right 

number is 1



Composing Transformations

• Order matters!
– Scale / rotate vs. rotate/scale

• Can implement by multiplying matrices
– T1 T2 T3 x = (T1 T2 T3) x



Why Compose?

• Rotate about a point
– Tc R T-c x

• Scale along an axis
– Move point to origin
– Align axis w/major axis
– Scale
– Put things back
– Tc Rθ S R-θ T-c x



Hierarchical coordinate Systems

• Car
– Wheel
– Wheel

• Person
– Head / Neck
– Arm / forearm / hand

Car

Wheel Wheel

T

body T T

T

T

R R

wheel wheel



Matrix Stack

• Multiply things onto the top
• Top is “current” coordinate system
• Push (copy the top) if you’ll come back
• Pop to go back

• Think about it as moving the coordinate system
• Top of stack is “current coordinate system”

– Where we will draw
• Transformations change current coord system

– Or change the objects that we are going to draw



Matrix Stack Example

• Draw Car = …. Push trans wheel pop …

• Push trans – draw car – pop push trans – draw car
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