
398 CHAPTER 13. CURVES AND CURVED SURFACES

Figure 13.32: The top left image shows the control mesh, i.e., that original mesh, which
is the only geometrical data that describes the resulting subdivision surface. The following
images are subdivided one, two, and three times. As can be seen, more and more polygons
are generated and the surface gets smoother and smoother. The scheme used here is the
Catmull-Clark scheme, described in Section 13.5.4.

The topic of subdivision curves has only been touched upon, but it is suffi-
cient for the presentation of subdivision surfaces that follows in the next section.
See the Further Reading and Resources section at the end of this chapter for
more references and information.

13.5 Subdivision Surfaces

Subdivision surfaces are a powerful paradigm in defining smooth, continuous,
crackless surfaces from meshes with arbitrary topology. As with all other sur-
faces in this chapter, subdivision surfaces also provide infinite level of detail.
That is, you can generate as many triangles or polygons as you wish, and the
original surface representation is compact. An example of a surface being subdi-
vided is shown in Figure 13.32. Another advantage is that subdivision rules are
simple and easily implemented. A disadvantage is that the analysis of surface

gleicher
Sticky Note
These pages are taken from: Akenine-Moller, Haines, and Hoffman. Real-Time Rendering, 3e. AK Peters publishers, 2008.They are provided for use in CS559, Computer Graphics only.

13.5. SUBDIVISION SURFACES 399

Figure 13.33: Subdivision as refinement and smoothing. The refinement phase creates
new vertices and reconnects to create new triangles, and the smoothing phase computes
new positions for the vertices.

continuity often is very mathematically involved. However, this sort of analysis
is often only of interest to those who wish to create new subdivision schemes,
and is out of the scope of this book—consult Warren and Weimer’s book [958]
and the SIGGRAPH course on subdivision [1024].

In general, the subdivision of surfaces (and curves) can be thought of as
a two-phase process [505]. Starting with a polygonal mesh, called the control
mesh, the first phase, called the refinement phase, creates new vertices and
reconnects to create new, smaller triangles. The second, called the smoothing
phase, typically computes new positions for some or all vertices in the mesh.
This is illustrated in Figure 13.33. It is the details of these two phases that
characterize a subdivision scheme. In the first phase, a polygon can be split
in different ways, and in the second phase, the choice of subdivision rules give
different characteristics such as the level of continuity, and whether the surface
is approximating or interpolating.

A subdivision scheme can be characterized by whether it is stationary ,
whether it is uniform, and whether it is triangle-based or polygon-based . A sta-
tionary scheme uses the same subdivision rules at every subdivision step, while a
nonstationary may change the rules depending on which step currently is being
processed. The schemes treated below are all stationary. A uniform scheme uses
the same rules for every vertex or edge, while a nonuniform scheme may use dif-
ferent rules for different vertices or edges. As an example, a different set of rules
is often used for edges that are on the boundaries of a surface. A triangle-based
scheme only operates on triangles, and thus only generates triangles, while a
polygon-based scheme operates on arbitrary polygons. We will mostly present
triangle-based schemes here because that is what graphics hardware is targeted
for, but we will also briefly cover some well-known polygon-based schemes.

Several different subdivision schemes are presented next. Following these,
two techniques are presented that extend the use of subdivision surfaces, along
with methods for subdividing normals, texture coordinates, and colors. Finally,
some practical algorithms for subdivision and rendering are presented.

400 CHAPTER 13. CURVES AND CURVED SURFACES

Figure 13.34: The connectivity of two subdivision steps for schemes such as Loop’s and the
modified butterfly scheme (see Section 13.5.2). Each triangle generates four new triangles.

13.5.1 Loop Subdivision

Loop’s subdivision scheme [589]5 was the first subdivision scheme for triangles.
It is similar to the last scheme in Section 13.4 in that it is approximating, and
that it updates each existing vertex and creates a new vertex for each edge.
The connectivity for this scheme is shown in Figure 13.34. As can be seen, each
triangle is subdivided into four new triangles, so after n subdivision steps, a
triangle has been subdivided into 4n triangles.

First, let us focus on an existing vertex pk, where k is the number of sub-
division steps. This means that p0 is the vertex of the control mesh. After one
subdivision step, p0 turns into p1. In general, p0 → p1 → p2 → · · · → p∞,
where p∞ is the limit point. If the valence of pk is n, then pk has n neighboring
vertices, pk

i , i ∈ {0, 1, . . . , n − 1}. See Figure 13.35 for the notation described
above. Also, a vertex that has valence 6 is called regular or ordinary ; otherwise
it is called irregular or extraordinary .

Below, the subdivision rules for Loop’s scheme are given, where the first
formula is the rule for updating an existing vertex pk into pk+1, and the second
formula is for creating a new vertex, pk+1

i , between pk and each of the pk
i .

Again, n is the valence of pk:

pk+1 = (1− nβ)pk + β(pk
0 + · · ·+ pk

n−1),

pk+1
i =

3pk + 3pk
i + pk

i−1 + pk
i+1

8
, i = 0 . . . n− 1.

(13.47)

Note that we assume that the indices are computed modulo n, so that if i =
n−1, then for i+1, we use index 0, and likewise when i = 0, then for i−1, we use
index n−1. These subdivision rules can easily be visualized as masks, also called
stencils; see Figure 13.36. The major use of these is that they communicate
almost an entire subdivision scheme using only a simple illustration. Note that
the weights sum to one for both masks. This is a characteristic that is true for
all subdivision schemes, and the rationale for this is that a new point should lie
in the neighborhood of the weighted points. In Equation 13.47, the constant β
is actually a function of n, and is given by:

β(n) =
1
n

(
5
8
− (3 + 2 cos(2π/n))2

64

)
. (13.48)

5A brief overview of Loop’s subdivision scheme is also presented by Hoppe et al. [418].

13.5. SUBDIVISION SURFACES 401

Figure 13.35: The notation used for Loop’s subdivision scheme. The left neighborhood
is subdivided into the neighborhood to the right. The center point pk is updated and
replaced by pk+1, and for each edge between pk and pk

i , a new point is created (pk+1
i ,

i ∈ 1, . . . , n).

Figure 13.36: The masks for Loop’s subdivision scheme (black circles indicate which vertex
is updated/generated). A mask shows the weights for each involved vertex. For example,
when updating an existing vertex, the weight 1 − nβ is used for the existing vertex, and
the weight β is used for all the neighboring vertices, called the 1-ring.

402 CHAPTER 13. CURVES AND CURVED SURFACES

Figure 13.37: A worm subdivided three times with Loop’s subdivision scheme.

Loop’s suggestion [589] for the β-function gives a surface of C2 continuity at
every regular vertex, and C1 elsewhere [1022], that is, at all irregular vertices.
As only regular vertices are created during subdivision, the surface is only C1

at the places where we had irregular vertices in the control mesh. See Fig-
ure 13.37 for an example of a mesh subdivided with Loop’s scheme. A variant
of Equation 13.48, which avoids trigonometric functions, is given by Warren and
Weimer [958]:

β(n) =
3

n(n + 2)
. (13.49)

For regular valences, this gives a C2 surface, and C1 elsewhere. The resulting
surface is hard to distinguish from a regular Loop surface. For a mesh that is
not closed, we cannot use the presented subdivision rules. Instead, special rules
have to be used for such boundaries. For Loop’s scheme, the reflection rules of
Equation 13.46 can be used. This is also treated in Section 13.5.5.

The surface after infinitely many subdivision steps is called the limit surface.
Limit surface points and limit tangents can be computed using closed form
expressions. The limit position of a vertex is computed [418, 1024] using the
formula on the first row in Equation 13.47, by replacing β(n) with:

γ(n) =
1

n + 3
8β(n)

. (13.50)

Two limit tangents for a vertex pk can be computed by weighting the immediate
neighboring vertices, called the 1-ring or 1-neighborhood, as shown below [418,
589]:

tu =
n−1∑

i=0

cos(2πi/n)pk
i , tv =

n−1∑

i=0

sin(2πi/n)pk
i . (13.51)

13.5. SUBDIVISION SURFACES 403

Figure 13.38: A tetrahedron is subdivided five times with Loop’s, the
√

3, and the Modified
Butterfly (MB) scheme. Loop’s and the

√
3-scheme are both approximating, while MB

is interpolating. Approximating schemes are acting as lowpass filters, which means that
shrinking occurs.

The normal is then n = tu× tv. Note that this often is less expensive [1024]
than the methods described in Section 12.3, which need to compute the normals
of the neighboring triangles. More importantly, this gives the exact normal at
the point.

A major advantage of approximating subdivision schemes is that the result-
ing surface tends to get very fair. Fairness is, loosely speaking, related to how
smoothly a curve or surface bends [674]. A higher degree of fairness implies a
smoother curve or surface. Another advantage is that approximating schemes
converge faster than interpolating schemes. However, this comes at the cost of
the shape being kind of low-pass filtered, which in turn means that the shapes
often shrink. This is most notable for small meshes, such as the tetrahedron
shown in Figure 13.38. One way to decrease this effect is to use more vertices
in the control mesh. i.e., care must be taken while modeling the control mesh.
Maillot and Stam present a framework for combining subdivision schemes so
that the shrinking can be controlled [607]. A characteristic that can be used to
great advantage at times is that a Loop surface is contained inside the convex
hull of the original control points [1022].

The Loop subdivision scheme generates a generalized three-directional quar-
tic box spline.6 So, for a mesh consisting only of regular vertices, we could actu-
ally describe the surface as a type of spline surface. However, this description is
not possible for irregular settings. Being able to generate smooth surfaces from
any mesh of vertices is one of the great strengths of subdivision schemes. See
also Sections 13.5.5 and 13.5.6 for different extensions to subdivision surfaces
that use Loop’s scheme.

6These spline surfaces are out of the scope of this book. Consult Warren’s book [958], the
SIGGRAPH course [1024], or Loop’s thesis [589].

404 CHAPTER 13. CURVES AND CURVED SURFACES

Figure 13.39: To the left is a simple three-dimensional star mesh. The middle image shows
the resulting surface using Loop’s subdivision scheme, which is approximating. The right
image shows the result using the modified butterfly scheme, which is interpolating. An
advantage of using interpolating schemes is that they often resemble the control mesh
more than approximating schemes do. However, for detailed meshes the difference is not
as distinct as shown here.

13.5.2 Modified Butterfly Subdivision

Here we will present the subdivision scheme by Zorin et al. [1019, 1022], which
is a modification of the butterfly scheme by Dyn et al. [225], and therefore often
referred to as the Modified Butterfly (MB) scheme. This scheme is nonuniform,
both because it uses different rules at the boundaries, and because different rules
are used depending on the valence of the vertices. The main difference from Loop
subdivision, however, is that it is interpolating, rather than approximating. An
interpolating scheme means that once a vertex exists in the mesh, its location
cannot change. Therefore, this scheme never modifies, but only generates new
vertices for the edges. See Figure 13.39 for an example between interpolating
and approximating schemes. The connectivity is the same as for Loop’s scheme,
shown in Figure 13.34.

The MB scheme uses four different subdivision rules for creating new ver-
tices between two existing vertices. These are all described below, and the
corresponding masks are shown in Figure 13.40.
1. Regular setting: Assume that we want to generate a new vertex between
two existing vertices, v and w, that each has valence 6. These vertices are called
regular or ordinary, and we call the situation a regular setting . The mask for
this situation is shown to the left in Figure 13.40.
2. Semiregular setting: A semiregular setting occurs when one vertex is
regular (n = 6), and another is irregular (n 6= 6), also called extraordinary, and
we want to generate a new vertex between these vertices. The following formula
computes the new vertex, where n is the valence of the irregular vertex:

n = 3 : w0 = 5/12, w1 = −1/12, w2 = −1/12,

n = 4 : w0 = 3/8, w1 = 0, w2 = −1/8, w3 = 0,

n ≥ 5 : wj =
0.25 + cos(2πj/n) + 0.5 cos(4πj/n)

n
.

(13.52)

13.5. SUBDIVISION SURFACES 405

Figure 13.40: The mask to the left is the “butterfly” mask, which is used when generating
a new vertex between two regular vertices (those with weights 1/2). The mask to the
right shows the weights when one vertex is irregular (the one with weight 1−Pwi), and
one vertex is regular (with weight w0). Note that black circles indicate which vertex is
generated. (Illustration after Zorin et al. [1024].)

Note that we used only the immediate neighborhood of the irregular vertex
to compute the new vertex, as shown in the mask in Figure 13.40.
3. Irregular setting: When an edge connects two vertices, where both vertices
are irregular (n 6= 6), we temporarily compute a new vertex for each of these
two vertices using the formula for the semiregular setting (2). The average of
these two vertices is used as the new vertex. This can happen at only the first
subdivision step, because after that there will be only regular and semiregular
settings in the mesh. Therefore the continuity of this choice does not affect the
limit surface. Zorin et al. [1019] note that this rule generates shapes with better
fairness.
4. Boundaries: At boundaries, where an edge in the triangle mesh has only
one triangle connected to it, the interpolating scheme [224] with w = 1/16,
described in Section 13.4, is used. This means that the weights, whose masks
are shown in Figure 13.40, are:

w−1 = −1/16, w0 = 9/16, w1 = 9/16, w2 = −1/16. (13.53)

More types of boundary cases exist—consult the SIGGRAPH course for more
about this [1024]. Implementation details are discussed by Sharp [841]. Since
this scheme is interpolating, limit positions of the vertices are the vertices them-
selves. Limit tangents are more complex to compute. For extraordinary vertices
(n 6= 6), the tangents can be calculated using Equation 13.51, that is, the same
formulae as for Loop [1022]. For ordinary vertices (n = 6), the 2-ring (also
called the 2-neighborhood) is used. The 1-ring and the 2-ring of an ordinary
vertex, p, is shown in Figure 13.41. The tangents vectors, tu and tv, are then
computed as:

tu = u · r,
tv = v · r, (13.54)

where r is a vector of the difference vectors pi − p of the entire 2-ring, and u

406 CHAPTER 13. CURVES AND CURVED SURFACES

Figure 13.41: An ordinary vertex, p, with its 1-ring (p0, . . . ,p5), and its 2-ring
(p6, . . . ,p17).

and v are vectors of scalars:

r = (p0 − p,p1 − p,p2 − p, . . . ,p16 − p,p17 − p),

u = (16,−8,−8, 16,−8,−8,− 8√
3
,

4√
3
,

4√
3
,− 8√

3
,

4√
3
,

4√
3
,

1,−1
2
,−1

2
, 1,−1

2
,−1

2
),

v = (0, 8,−8, 0, 8,−8, 0,− 4√
3
,

4√
3
, 0,− 4√

3
,

4√
3
,

0,
1
2
,−1

2
, 0,

1
2
,−1

2
).

(13.55)

This means that, for example, tu is computed as:

tu = 16(p0 − p)− 8(p1 − p)− · · · − 0.5(p17 − p). (13.56)

After computing both tu and tv, the normal is n = tu × tv.
When an interpolating scheme is desired, the MB scheme is a good choice.

For example, say you have modeled a human, and decide that you want to sub-
divide it to get better shading. An interpolating scheme will generate a surface
that is more like the control mesh. This is most notable when using meshes with
few triangles. For larger meshes, the differences disappear. However, the inter-
polating characteristics come at the cost that the scheme may generate weird
shapes with “unnatural” undulations, and thus, less fairness. This is common
for all interpolating schemes. See Figure 13.42 for a nasty example. Another

13.5. SUBDIVISION SURFACES 407

Figure 13.42: The cube on the left is subdivided using Loop’s scheme (middle), and the
modified butterfly scheme (right). Each face on the cube consists of two triangles. Note
the “unnatural” undulations on the right surface. This is because it is much harder to
interpolate a given set of vertices.

disadvantage is that the masks are bigger than those used for Loop’s scheme
and the

√
3-scheme presented in Section 13.5.3, and thus it is more expensive

to evaluate.
Despite these disadvantages, interpolating schemes such as MB can be well-

suited for real-time rendering work. Meshes for real-time work are normally not
finely tessellated, so an interpolated surface is usually more intuitive, as it more
closely matches the location of the control mesh. The tradeoff is that fairness
problems can occur, but in many cases, minor adjustments to the underlying
mesh can smooth out rippling [840]. The MB scheme is C1-continuous all over
the surface, even at irregular vertices [1022]. See Figure 13.38 on page 403, and
Figure 13.43 for two examples. More about this scheme can be found in Zorin’s
Ph.D. thesis [1022] and in Sharp’s articles [840, 841].

13.5.3
√

3-Subdivision

Both Loop’s and the MB schemes split each triangle into four new ones, and
so create triangles at a rate of 4nm, where m is the number of triangles in the
control mesh, and n is the number of subdivision steps. A feature of Kobbelt’s√

3-scheme [505] is that it creates only three new triangles per subdivision step.7

The trick is to create a new vertex (here called mid-vertex) in the middle of each
triangle, instead of one new vertex per edge. This is shown in Figure 13.44. To
get more uniformly shaped triangles, each old edge is flipped so that it connects
two neighboring midvertices. In the subsequent subdivision step (and in every
second subdivision step thereafter), the shapes of the triangles more resemble
the initial triangle configuration due to this edge flip.

The subdivision rules are shown in Equation 13.57, where pm denotes the
midvertex, computed as the average of the triangle vertices: pa, pb, and pc.

7The name stems from the fact that while Loop’s and the MB schemes divide each edge
into two new edges per subdivision step, Kobbelt’s scheme creates three new edges per two
subdivision steps. Thus the name

√
3-subdivision.

408 CHAPTER 13. CURVES AND CURVED SURFACES

Figure 13.43: A worm is subdivided three times with the modified butterfly scheme. Notice
that the vertices are interpolated at each subdivision step.

Figure 13.44: Illustration of the
√

3-subdivision scheme. A 1-to-3 split is performed instead
of a 1-to-4 split as for Loop’s and the modified butterfly schemes. First, a new vertex is
generated at the center of each triangle. Then, this vertex is connected to the triangle’s
three vertices. Finally, the old edges are flipped. (Illustration after Kobbelt [505].)

13.5. SUBDIVISION SURFACES 409

Figure 13.45: The masks for the
√

3-subdivision scheme. As can be seen, the face mask
gives minimal support, since it uses only the three vertices of the triangle. The vertex
mask uses all the vertices in the ring, called the 1-ring, around the vertex.

Each of the old vertices, pk, are updated using the formula in the second line,
where pk

i (i = 0 . . . n− 1) denotes the immediate neighbors of pk, and n is the
valence of pk. The subdivision step is denoted by k as before.

pk+1
m =(pk

a + pk
b + pk

c)/3

pk+1 =(1− nβ)pk + β

n−1∑

i=0

pk
i

(13.57)

Again, β is a function of the valence n, and the following choice of β(n)
generates a surface that is C2 continuous everywhere except at irregular vertices
(n 6= 6), where the continuity is at least C1 [505].

β(n) =
4− 2 cos(2π/n)

9n
(13.58)

The masks, which are of minimum size, for the
√

3-scheme are shown in
Figure 13.45.

The major advantage of this scheme is that it supports adaptive subdivision
in a more natural way. See Kobbelt’s paper [505] for details. Some other
advantages of this scheme are smaller masks, and slower triangle growth rate
than Loop’s and the MB scheme. The continuity of this scheme is the same as
Loop’s. Disadvantages include that the edge flip introduces a little complexity,
and that the first subdivision step sometimes generates unintuitive shapes due
to the flip. In Figure 13.46, a worm is subdivided with the

√
3-scheme, and in

Figure 13.38 on page 403, a tetrahedron is subdivided.

13.5.4 Catmull-Clark Subdivision

The two most famous subdivision schemes that can handle polygonal meshes
(rather than just triangles) are Catmull-Clark [133] and Doo-Sabin [206].8 Here,
we will only briefly present the former. Catmull-Clark surfaces have been used

8Incidentally, both were presented in the same issue of the same journal.

410 CHAPTER 13. CURVES AND CURVED SURFACES

Figure 13.46: A worm is subdivided three times with the
√

3-subdivision scheme.

Figure 13.47: The basic idea of Catmull-Clark subdivision. Each polygon generates a new
point, and each edge generates a new point. These are then connected as shown to the
right. Weighting of the original points is not shown here.

in Pixar’s short film Geri’s Game [189] and in Toy Story 2, and in all subsequent
feature films from Pixar. As pointed out by DeRose et al. [189], Catmull-Clark
surfaces tend to generate more symmetrical surfaces. For example, an oblong
box results in a symmetrical ellipsoid-like surface, which agrees with intuition.

The basic idea for Catmull-Clark surfaces is shown in Figure 13.47, and
an actual example of Catmull-Clark subdivision is shown in Figure 13.32 on
page 398. As can be seen, this scheme only generates faces with four vertices.
In fact, after the first subdivision step, only vertices of valence 4 are generated,
thus such vertices are called ordinary or regular (compared to valence 6 for
triangular schemes).

Following the notation from Halstead et al. [364] (see Figure 13.48), let us
focus on a vertex vk with n surrounding edge points ek

i , where i = 0 . . . n − 1.
Now, for each face, a new face point fk+1 is computed as the face centroid, i.e.,
the mean of the points of the face. Given this, the subdivision rules are [133,

13.5. SUBDIVISION SURFACES 411

v0

e0
0

e0
1

e0
2

e0
n-1

v1

e1
0

e1
1

f1
0

f1
1

e1
2

f 0
n-1

Figure 13.48: Before subdivision, we have the blue vertices and corresponding edges and
faces. After one step of Catmull-Clark subdivision, we obtain the red vertices, and all new
faces are quadrilaterals. Illustration after Halstead et al. [364].

364, 1024]:

vk+1 =
n− 2

n
vk +

1
n2

n−1∑

j=0

ek
j +

1
n2

n−1∑

j=0

fk+1
j ,

ek+1
j =

vk + ek
j + fk+1

j−1 + fk+1
j

4
.

(13.59)

As can be seen, new edge points are computed by the average of the con-
sidered vertex, the edge point, and the two newly created face points that have
the edge as a neighbor. On the other hand, the vertex is computed as weighting
of the considered vertex, the average of the edge points, and the average of the
newly created face points.

The Catmull-Clark surface describes a generalized bicubic B-spline surface.
So, for a mesh consisting only of regular vertices we could actually describe the
surface as a B-spline surface.9 However, this is not possible for irregular settings,
and being able to do this using subdivision surfaces is one of the scheme’s
strengths. Limit positions and tangents are also possible to compute [364].
See Section ?? for a highly efficient technique on how to render Catmull-Clark
subdivision surfaces on graphics hardware with tesseltation shaders.

13.5.5 Piecewise Smooth Subdivision

In a sense, curved surfaces may be considered boring because they lack detail.
Two ways to improve such surfaces are to use bump or displacement maps

9See the SIGGRAPH course notes for more on this topic [1024].

412 CHAPTER 13. CURVES AND CURVED SURFACES

Figure 13.49: The top row shows a control mesh, and the limit surface using the standard
Loop subdivision scheme. The bottom row shows piecewise smooth subdivision with Loop’s
scheme. The lower left image shows the control mesh with tagged edges (sharp) shown
in a light gray. The resulting surface is shown to the lower right, with corners, darts, and
creases marked. (Image courtesy of Hugues Hoppe.)

(Section 13.5.6). A third approach, piecewise smooth subdivision, is described
here. The basic idea is to change the subdivision rules so that darts, corners,
and creases can be used. This increases the range of different surfaces that can
be modeled and represented. Hoppe et al. [418] first described this for Loop’s
subdivision surfaces. See Figure 13.49 for a comparison of a standard Loop
subdivision surface, and one with piecewise smooth subdivision.

To actually be able to use such features on the surface, the edges that we
want to be sharp are first tagged, so we know where to subdivide differently.
The number of sharp edges coming in at a vertex is denoted s. Then the

13.5. SUBDIVISION SURFACES 413

vertices are classified into: smooth (s = 0), dart (s = 1), crease (s = 2), and
corner (s > 2). Therefore, a crease is a smooth curve on the surface, where
the continuity across the curve is C0. A dart is a nonboundary vertex where a
crease ends and smoothly blends into the surface. Finally, a corner is a vertex
where three or more creases come together. Boundaries can be used by marking
each boundary edge as sharp.

After classifying the various vertex types, Hoppe et al. use a table to deter-
mine which mask to use for the various combinations. They also show how to
compute limit surface points and limit tangents. Biermann et al. [70] present
several improved subdivision rules. For example, when extraordinary vertices
are located on a boundary, the previous rules could result in gaps. This is
avoided with the new rules. Also, their rules make it possible to specify a nor-
mal at a vertex, and the resulting surface will adapt to get that normal at that
point. DeRose et al. [189] present a technique for creating soft creases. Ba-
sically, they allow an edge to first be subdivided as sharp a number of times
(including fractions), and after that, standard subdivision is used.

13.5.6 Displaced Subdivision

While parametric surfaces and subdivision surfaces are great for describing
smooth surfaces, they are sometimes not that useful because the surfaces lack
detail. One solution would be to use bump mapping (see Section 6.8). How-
ever, this is just an illusionary trick that changes the normal in each pixel, and
thus, the shading. The silhouette of an object looks the same with or with-
out bump mapping. The natural extension of bump mapping is displacement
mapping [155], where the surface is displaced. This is usually done along the
direction of the normal. So, if the point of the surface is p, and its normalized
normal is n = n′/||n′||, then the point on the displaced surface is:

s = p + dn. (13.60)

Here, the scalar d is the displacement at the point p. The displacement
could also be vector-valued [512].

In this section, the displaced subdivision surface [556] will be presented. The
general idea is to describe a displaced surface as a coarse control mesh that is
subdivided into a smooth surface that is then displaced along its normal using a
scalar field. In the context of displaced subdivision surfaces, p in Equation 13.60
is the limit point on the subdivision surface (of the coarse control mesh), and n
is the normalized normal at p, computed as:

n′ = pu × pv,

n =
n′

||n′|| .
(13.61)

In Equation 13.61, pu and pv are the first-order derivative of the subdivision
surface. Thus, they describe two tangents at p. Lee et al. [556] use a Loop sub-
division surface for the coarse control mesh, and its tangents can be computed

414 CHAPTER 13. CURVES AND CURVED SURFACES

Figure 13.50: The masks for an ordinary vertex in Loop’s subdivision scheme. Note that
after using these masks, the resulting sum should be divided as shown. (Illustration after
Lee et al. [556].)

using Equation 13.51. Note that the notation is slightly different here; we use
pu and pv instead of tu and tv. Equation 13.60 describes the displaced posi-
tion of the resulting surface, but we also need a normal, ns, on the displaced
subdivision surface in order to render it correctly. It is computed analytically
as shown below [556]:

su =
∂s
∂u

= pu + dun + dnu,

sv =
∂s
∂v

= pv + dvn + dnv,

ns = su × sv.

(13.62)

To simplify computations, Blinn [81] suggests that the third term can be
ignored if the displacements are small. Otherwise, the following expressions can
be used to compute nu (and similarly nv) [556]:

n̄u = puu × pv + pu × puv,

nu =
n̄u − (n̄u · n)n

||n′|| .
(13.63)

Note that n̄u is not any new notation, it is merely a “temporary” variable in
the computations. For an ordinary vertex (valence n = 6), the first and second
order derivatives are particularly simple. Their masks are shown in Figure 13.50.
For an extraordinary vertex (valence n 6= 6), the third term in rows one and
two in Equation 13.62 is omitted.

The displacement map for one triangle in the coarse mesh is a scalar field,
that is, a heightfield. The storage requirements for one triangle is one half of
(2k +1)× (2k +1), where k is the number of subdivisions that the displacement
map should be able to handle, which depends on the desired accuracy. The
displacement map uses the same parameterization as the underlying subdivi-
sion mesh. So, for example, when one triangle is subdivided, three new points

13.5. SUBDIVISION SURFACES 415

Figure 13.51: To the left is a coarse mesh. In the middle, it is subdivided using Loop’s
subdivision scheme. The right image shows the displaced subdivision surface. (Image
courtesy Aaron Lee, Henry Moreton, and Hugues Hoppe.)

are created. Displacements for these three points are retrieved from the dis-
placement map. This is done for k subdivision levels. If subdivision continues
past this maximum of k levels, the displacement map is subdivided as well,
using Loop’s subdivision scheme. The subdivided displacement, d, is added us-
ing Equation 13.60. When the object is farther away, the displacement map is
pushed to the limit points, and a mipmap pyramid of displacements is built as
a preprocess and used. The resulting displaced subdivision surface is C1 every-
where, except at extraordinary vertices, where it is C0. Remember that after
sufficiently many subdivision steps, there is only a small fraction of vertices that
are extraordinary. An example is shown in Figure 13.51.

When a displaced surface is far away from the viewer, standard bump map-
ping could be used to give the illusion of a displaced surface. This is especially
advantageous if the rendering bottleneck is geometry processing. Some bump
mapping schemes need a tangent space coordinate system at the vertex, and
the following can be used for that: (b, t,n), where t = pu/||pu|| and b = n× t.

Lee et al. [556] also present how adaptive tessellation and backpatch culling
can be used to accelerate rendering. More importantly, they present algorithms
to derive the control mesh and the displacement field from a detailed polygon
mesh.

13.5.7 Normal, Texture, and Color Interpolation

In this section, we will present different strategies for dealing with normals,
texture coordinates and color per vertex.

As shown for Loop’s scheme in Section 13.5.1, and the MB scheme in Sec-
tion 13.5.2, limit tangents, and thus, limit normals can be computed explicitly.
This involves trigonometric functions that are expensive to evaluate. However,
a very short look-up table can do the job efficiently. Another approach is to
compute limit normals (that are exact) at the vertices of the control mesh, and
then use the same subdivision scheme used for the vertices to subdivide the nor-

416 CHAPTER 13. CURVES AND CURVED SURFACES

mals as well [459]. However, this increases the storage need during subdivision,
and it is not obvious whether this is faster. Also, with this scheme, the exact
normals will not be generated in the end.

Assume that each vertex in a mesh has a texture coordinate and a color. To
be able to use these for subdivision surfaces, we also have to create colors and
texture coordinates for each newly generated vertex, too. The most obvious way
to do this is to use the same subdivision scheme as we used for subdividing the
polygon mesh. For example, you can treat the colors as four dimensional vectors
(RGBA), and subdivide these to create new colors for the new vertices [841].
This is a reasonable way to do it, since the color will have a continuous derivative
(assuming the subdivision scheme is at least C1), and thus abrupt changes in
colors are avoided over the surface The same can certainly be done for texture
coordinates [189]. A sophisticated scheme for texturing subdivision surfaces is
given by Piponi and Borshukov [741].

13.6 Efficient Tessellation

To actually use curved surfaces in a real-time rendering context, we often need
to create triangles on the surface. This process is known as tessellation. The
simplest form of tessellation is called uniform tessellation. Assume that we
have a parametric Bézier patch, p(u, v), as described in Equation 13.27. We
want to tessellate this patch by computing 11 points per patch side, resulting
in 10× 10× 2 = 200 triangles. The simplest way to do this is to sample the uv-
space uniformly. Thus, we evaluate p(u, v) for all (uk, vl) = (0.1k, 0.1l), where
both k and l can be any integer from 0 to 10. This can be done with two nested
for-loops. Two triangles can be created for the four surface points p(uk, vl),
p(uk+1, vl), p(uk+1, vl+1), and p(uk, vl+1).

While this certainly is straightforward, there are faster ways to do it. Instead
of sending tessellated surfaces, consisting of many triangles, over the bus from
the CPU to the GPU, it makes more sense to send the curved surface represen-
tation to the GPU, and let it handle the data expansion. In the following five
subsections, we will describe tessellation hardware, fractional tessellation, the
evaluation shader, and how to render Catmull-Clark surfaces and displacement
mapped surfaces with such hardware. This type of tessellaion is supported by
the ATI Radeon HD 2000 series and also by the XBOX 360. Techniques for
adapative tesselation is described in Section 13.6.4.

13.6.1 Hardware Tessellation Pipeline

An efficient way of providing inexpensive data expansion of geometry, is to send
higher order surfaces to the GPU, and let it tessellate the surface. This can be
done with a rather small, but important, change in the rendering pipeline. This
is illustrated in Figure 13.52.

The tessellator uses a fractional tessellation technique, which is described in
the subsequent section. This basically tessellates a triangle or a quadrilateral

