Comparing Motion Editing Methods

Michael Gleicher
Department of Computer Sciences
University of Wisconsin- Madison
Summary

- There’s a wide variety of things to do…
- All have their downsides…
- The tradeoffs might not be what I thought…
- Spacetime is expensive (but how?)
- You get something for your efforts (what?)
- Other options (which?)
Motion Editing?

- Changing the Movement (not the form)
- Pretty unique for computer animation.
- Could be just about anything…
Motion Editing

• What changes? What doesn’t change?

• Methods characterized by the range of how they can answer these questions
 – Implicitly: methods just can’t make some changes (e.g. timing only)
 – Explicitly: allow specifying what’s important: Constraints
A Taxonomy of Motion Editing

- Taxonomy by what can be done
- Taxonomy by how it does it
- Taxonomy by what it can do it to

Why?

Help understand tradeoffs
Point towards unexplored areas of design space
Constraint-Based Motion Editing

• Focus: methods that explicitly represent geometric constraints
• Independent of parameters
 – E.g. specify end-effector goals too
• Such methods must:
 – Deal with non-linear mappings
 – Deal with temporal constraints
 – Address issues in specification, display, …
Taxonomy of Solution Methods

• What is “under the hood”?
• Who cares?
 – Me (since it’s what I do)
 – Other issues independent
 – Should the user care? (if not, should we care?)
 – Scariest part of implementation (?!?!?!?)
 – Other challenges really given by systems/integration issues
Types of Constraints

Spatial Constraints
- Geometric Details
- Checkable at times
- Possibly over durations
- Limitations of character, interactions with environment
- Joint limits, footplants, hand-holds, intersection, ...

Temporal Constraints
- Restrictions on how things move
- Always relate times
- About paths
- Smoothness, Continuity, ...

Taxonomy by:

How are Temporal constraints handled

- By definition, constraint-based techniques handle spatial constraints
- Well studied problem
- Temporal constraints differentiate approaches
What Temporal Constraints?

• Not as well defined as spatial ones!

• Preserve frequency content
 – Don’t add jitter / jumps
 – Don’t remove snappiness
 – Keep solutions consistent

• Preserve physics

• ?????? (what else?)
Taxonomy of CBME solvers

Constraint-Based Motion Editing

- Each Time Independent
- Many Times Together Spacetime

Per-Key
Per-Frame
Keep Physics
Discard Physics
Taxonomy

Constraint-Based Motion Editing

Each Time Independent

Per-Key
Per-Frame

Many Times Together Spacetime

Keep Physics
Discard Physics
Per-Frame vs. Per-Key

- Apply an “IK” solver to compute parameters for individual time steps
 - On each key (e.g. sparse) PKIK
 - On each frame (e.g. dense) PFIK
- Solver computes 1 instant
 - May consider other times in doing so
Per-Key vs. Per-Frame

- Per-Key implies interpolation
 - Continuity through interpolation
- Per-Frame requires some way to keep consistency (avoid inducing jitter, ...)
 - Look-behind
 - Compute one frame, from many
 - Build smarts into IK solver
Consider all constraints simultaneously
– NOT frame at a time
Solve for motions
– “best” motion that meets constraints
Physics is just a constraint
Taxonomy

Constraint-Based Motion Editing

- Each Time Independent
 - Per-Key
 - Per-Frame

- Many Times Together Spacetime

Discard Physics
- Simplify for tractability

Keep Physics
- Complex constraints for Quality
Each for something different

- PKIK - requires (meaningful) keys
- PFIK - places burden of temporal constraints on IK solver
- Spacetime – off-line, complicated, hard to implement, but gives nice results?
 - Physics spacetime? Really hard to do, slow, unscalable, not demonstrated, ….
Video:

Wins and Loses of Spacetime

- “Found” examples (retarget found motion to found character)
- Path Transformations (unpublished)
- Real-time, interactive examples

- Bloopers
 - (note: Pelican is first try- we can probably get it to work)
Wins and Losses of Spacetime

- Fast, practical
 - Linear complexity?
- Solves real problems
- Flexibility in:
 - Spatial Constraints
 - Objective Functions?
 - Temporal Constraints?
- Widely applicable
- Nice results
- Hard to implement
- Poor integration
- Off-line
- No guarantees
- Spatial constraints not enforced
- Flexibility not exploited
- Rely on constraints
Is there an alternative?

- Need to deal with spatial and temporal constraints
- Don’t want the messiness of “whole motion” computation
- Handle spatial and temporal constraints separately!
Per-Frame IK + Filter (PFIK+F)

- IK per frame to solve spatial constraints
 - But this messes up temporal constraints
- Filter changes to enforce temporal constraints
 - But this messes up spatial constraints
- Iterate until converges, or …
The published instance of this approach is Lee and Shin (SIGGRAPH ’99)

Many decisions to be made…
- What IK solver? (tradeoff quality/performance)
- How to do temporal constraints?
- Representation of motion?
- Iteration Schedule?

L&S made innovative choices for each
PFIK+F vs. Spacetime

- Fast, practical
- Solves real problems
- Flexibility in:
 - Spatial Constraints
 - Objective Functions (?)
 - Temporal Constraints (?)
- Widely applicable
- Nice results

- Yes! (requires fast IK)
- Yes!
- (depends on IK)
- (depends on IK)
- (limited, unexplored)
- Yes!
- Um, it’s a matter of taste, and IK quality
PFIK+F vs. Spacetime

- Use standard pieces!
- Use standard pieces!
- Choice in which last
- Solve spatial constraints last
- Need good IK
- Hard to implement
- Poor integration
- Off-line
- No guarantees
- Spatial constraints not enforced
- Flexibility not exploited
- Rely on constraints
My PFIK+F solver

- Use pieces I have lying around
- Non-linear optimizing solver for IK
- FIR linear filters for temporal constraints

- Not fast (numbers in paper are wrong)
- Not tuned
- (but L&S showed you can do this)
Video (Showdown)

- Unfair competition?
 - Well evolved Spacetime implementation
 - Although, it is used in PFIK+F as well

- Point: both methods can give similar results (differences are subtle)
Downsides of PFIK+F?

• No global decisions
 – Doesn’t handle “don’t cares” as well
 – Order dependence
 – No interframe constraints

• Reliance on quality of IK solver

• Not necessarily faster (or slower)
History of graphics performance tuning (from my short career)

• 1988 – (68020) avoid computation (cache)
• 1990 – (R2000) avoid floating point
• 1993 – (R3000) avoid array indexing
• 1995 – (PPC601) avoid type conversion
• 1997 – (PPC604) avoid memory allocation
• 1999 – (Pentium III) avoid cache misses
 (floating point is fast)
• 2000 – (Pentium III, Rambus) avoid memory stalls
 (memory is pipelined)
Constraint-Based Motion Editing

Constraint-Based Motion Editing

- Each Time Independent
- Many Times Together Spacetime

- Per-Key
- Per-Frame
- Per-Frame Plus Filter
- Discard Physics
- Keep Physics
• There’s a wide variety of things to do…
• All have their downsides…
• The tradeoffs might not be what I thought…

• Spacetime is expensive (but how?)
• You get something for your efforts (what?)
• Other options (which?)
Thanks!

- Microsoft Research for supporting this work.
- Intel, Pixar, Autodesk, and Alias/Wavefront for donating hardware and software
- The U.W. Visual Computing Group
 - Andy Gardner (for running trials, new demos)
 - Alex Mohr (debugging code and prose)
 - Andrew Prock (arc-length re-parameterizations)
- House of Moves Studios for providing data
- Prof. Ko for inviting me.
- Lori for letting me go