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Abstract
We introduce Group Motion Graphs, a data-driven animation technique for groups of discrete agents, such as
flocks, herds, or small crowds. Group Motion Graphs are conceptually similar to motion graphs constructed from
motion-capture data, but have some important differences:we assume simulated motion; transition nodes are
found by clustering group configurations from the input simulations; and clips to join transitions are explicitly
constructed via constrained simulation. Graphs built thisway offer known bounds on the trajectories that they
generate, making it easier to search for particular output motions. The resulting animations show realistic motion
at significantly reduced computational cost compared to simulation, and improved control.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism:Animation

1. Introduction

Rule-based agent techniques are commonly used to animate
groups of virtual creatures in both real-time environments
and off-line production. Examples range from the flocking
models of Reynolds [Rey87], to commercial systems like
MASSIVE [Dun02] and AI.implant [AI.03], to any number
of crowd animation systems. Agent models must be highly
efficient for use in computer games and interactive systems,
particularly when acting as secondary animation to add re-
alism to an environment. Furthermore, agent models should
offer two forms of control: over what the group looks like
and what the group does. For instance, an appearance goal
might be resemblance to a particular animal herd, while an
action goal might be following a particular path through the
environment. In this paper we present Group Motion Graphs,
a data-driven agent animation technique that addresses effi-
ciency and both forms of control.

Data-driven methods record motion in a pre-production
stage, and then play back the data to drive run-time mo-
tion (the most common example is human motion cap-
ture). Group Motion Graphs (GMGs) record the motion
of an agent group as a whole, including the configura-
tion of agents within the group. As with human motion
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graphs [KGP02,AF02,LCR∗02], the data clips are stored in
a graph structure that encodes which clips can be appended
while retaining realistic, continuous motion. We describe
techniques for constructing clips from agent-based simula-
tions that can be pieced together in a dense graph structure.
We demonstrate several uses of the resulting graph, includ-
ing path following and random motion restricted to a region.

There are three principle advantages to GMGs: efficiency,
style control, and constraint satisfaction. The run-time CPU
cost of unconstrained motion generation from GMGs is es-
sentially the time taken to set animation state from the clips.
In comparison, a rule-based group simulation requires some
mechanism for tracking relationships between agents and
evaluating rules, which leads to super-linear cost with large
constants. Motion clips encode a particular style, or an im-
plicit set of constraints on the appearance of the motion. This
style is maintained by the playback scheme, so a designer
can be certain that motion generated from their clips will re-
tain their style. Finally, once a graph of clips has been built
it can be searched with standard techniques to produce con-
strained trajectories. This is cheaper than searching within a
continuous simulation state space.

Our primary contribution is a method for building motion
graphs for groups of discrete agents. This includes solutions
to the problems of finding good transition configurations, a
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novel graph structure that gives guarantees on the synthe-
sized motion, and techniques for computing transition prob-
abilities on the graph. We also describe a new technique for
forcing a flocking simulation to a specific group configura-
tion while moving along a specific path.

GMGs are suitable for applications where the group
moves through the environment as a cohesive unit, and in-
dividual agents do not interact with objects external to the
group. We thus see the primary application as simulations
that add realistic but previously expensive elements to large
virtual environments. For example, outdoor game environ-
ments could cheaply add a roaming herd or circling flock,
without incurring the cost of a large-scale agent simula-
tion. Another application is constrained animation in which
a group must follow a specific trajectory or meet other con-
straints.

2. Overview

A motion graph is a directed graph in which edges corre-
spond to pre-recorded animation clips, and nodes represent
places where clips can be joined. Animation generated from
the graph can be thought of as a point that follows an edge
and makes a choice at transitions as to which edge to fol-
low next. Construction of a motion graph requires identi-
fying transition points and the creation of clips to achieve
seamless transitions. Others have defined motion graphs as
the dual of ours, with clips at nodes and edges as transitions;
the representations are functionally the same.

All of the graphs in this paper are based on the flocking
model introduced by Reynolds [Rey87]. When simulating to
generate motion, each agent at each time-step adjusts its tra-
jectory by evaluating rules based on its own state and that
of its neighbors. The output state of the system is the posi-
tion and velocity of each agent at each timestep — this is
what we store in group motion clips. At a high level, the
techniques we describe could be applied to other group ani-
mation systems, even motion-captured groups. However, ef-
fective GMGs require group configurations that naturally re-
peat themselves often or the ability to force such repetition,
properties that may not be available in all group models.
Drawing extreme examples from sports, volleyball would be
a good candidate for group motion graphs because it has a re-
peated starting configuration, while football (soccer) would
pose greater difficulties.

A good motion graph has many options for transitions
from one clip to another. This increases variety in the re-
sulting motion. Equally important, the clips should sample
the space of possible motions well [RP04] so that control al-
gorithms have the flexibility to meet a wide range of goals.
The clips should be short to enable frequent control choices,
but not so short that the frequent transitions create artifacts.
Short clips, well distributed over the range of motion, also
save memory because variety can be obtained by rich com-
binations of clips, rather than individually complex clips.

Clustered input frames

Group Motion Graph

Edges

Figure 1: The first step in building a GMG is clustering in-
put configurations (top). The representative configurations
from each cluster are used as transition nodes in a dense
graph, where each edge represents a family of clips that fol-
low a specific circular trajectory. Link nodes (the rectangu-
lar node) are inserted to break edges that are too long.

GMGs use a novel construction method that produces
graphs with a controllable density and transition frequency.
Our construction method also assigns probabilities to transi-
tions; these are used to improve the realism of synthesis. The
stages in constructing a GMG are:

• Find a small set ofcluster configurationsthat are repre-
sentative of all the configurations seen in the input. Link
them in a complete graph, with several edges of varying
curvature between each configuration (Figure1 and Sec-
tion 4). Explicitly creating edges in this way gives guar-
antees on the trajectories that the graph can produce — in
our case piecewise circular.

• Determine the required duration of the motion clips cor-
responding to each edge in the graph, based on how much
the arrangement of agents must change while traveling
along the edge. If the clips are too long, insert additional
link nodesto place an upper bound on the time between
each transition (Section4.3).

• Gather statistics on the transitions between the nodes
along each graph edge. This allows us to synthesize mo-
tion with statistical properties similar to the input.

• Useconstrained simulationto construct the clips for each
edge, as described in Section5. New rules are added to
the flocking behaviors to force the group along a specific
path and into a specific arrangement of agents.

A variety of graph search algorithms can be applied to
motion graphs to synthesize new motion with particular
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properties, as we describe in Section7. We demonstrate ran-
dom walk on the graph guided by transition probabilities,
which produces unconstrained motion that is very similar in
style to the input motion. When used for secondary motion,
it may be desirable to keep the group within the extents of
the world. We describe a random walk with look-ahead that
restricts transitions to keep the group within a region. Fi-
nally, the group may be required to follow a specific path
or hit certain way-points. We give greedy andA∗ search al-
gorithms that support such constraints. Because GMGs are
constructed to densely sample trajectories, we can be sure of
following any path within curvature limitations.

3. Related Work

Motion capture [Men99] is the prominent application of
data-driven animation. The formalism of connecting clips
into a graph structure was independently developed by
Arikan and Forsyth [AF02], Lee et al. [LCR∗02], and Kovar
et al. [KGP02]. Each group differed in how they matched
frames and generated motion from the graph, but all found
matches between poses in different frames and inserted tran-
sitions into the graph at these points. To improve the respon-
siveness and predictability of motion synthesis, Gleicheret
al. [GSKJ03], constructed graphs with only a few transition
nodes but many links; in an interactive application any mo-
tion is reachable from any other in only a very short period
of time. GMGs use a similar idea to ensure that any trajec-
tory can be generated from the graph. Lee and Lee [LL04]
obtained interactive control using reinforcement learning to
pre-compute the optimal action given a target state. While
successful at planning for short-term goals, such as a boxing
punch, their approach does not extend well to situations with
a broad range of possible targets.

Other applications of data-driven synthesis for anima-
tion range from synthetic motion capture of fish body mo-
tion [YT99], to capturing the response of grass to a wind
field [PC01]. In the former case, the state-space was the
pose of the fish, and parameters for a periodic motion model
were extracted from the simulation to speed up the run-time
simulation. In the latter case, the bending of grass for vary-
ing wind speeds was pre-computed. Data-driven techniques
have also been used to model the impulse response of dy-
namic systems such as cloth and plant models [JF03], how-
ever the size of the state space severely limited the possible
impulses that could be applied. Notably, this method also
pre-computed rendering parameters to provide interactive
global illumination. None of these prior systems deal with
the coordinated motion of groups.

GMGs provide a means of controlling the trajectory
of a group as a whole. Previous techniques for guiding
flocks include Reynolds’ steering behaviors [Rey99] and the
roadmap techniques of Bayazit et al. [BLA02]. While these
techniques are sufficient for guiding a flock along some gen-
eral path, the interactions between rules typically require

(a) (c)(b)

Figure 2: Configurations (a) and (b) are similar, because
agents are arranged the same way with respect to the aver-
age velocity, despite that velocity being different in world
coordinates and despite some agents switching locations.
Group (c) is not similar because the arrangement is different
with respect to the group’s velocity, despite being the same
as (a) in world coordinates. Also shown is the origin and
principle axis of theconfiguration spacecoordinate system
attached to each group.

compromise between constraint satisfaction and the style
of the motion. The degree of control we offer encompasses
these previous methods and adds additional tools. Anderson
et al. [AMC03] describe an algorithm for global control of
a flock that can meet hard constraints, but the method is not
suitable for on-line control. GMGs simplify constrained ani-
mation by reducing the problem to one over a discrete search
space (walks on the graph). A similar approach was taken by
Go et al. [GVK04] for controlling single vehicles, but they
did not work with an explicit graph structure.

We use Markov chain statistical techniques to control mo-
tion synthesis from GMGs. Brand and Hertzmann [BH00],
Li et al. [LWS02] and Grochow et al. [GMHP04] are just
some recent examples of the application of Markov mod-
els to human motion synthesis. Our techniques are simpler
because we are only concerned with the sequence of path
segments given the group’s configuration (the relationship
between pose and trajectory for human motion), not the re-
lationship between the group’s members (human pose itself).

4. GMG Construction

The following sections describe the steps in building a
GMG, beginning with a discussion of what it means for two
group configurations to be similar.

4.1. Group Configurations

We make two assumptions about the group motion to maxi-
mize the self-similarity of groups within a cluster (Figure3).
First, we assume that the group’s configuration depends on
the direction of travel, but not how this direction of travel
is embedded in the world (a typical assumption for motion
graphs). Second, we assume that all the agents are evaluating
the same set of rules, and hence can fulfill any role within the
group. For comparing two configurations,CX andCY, this
means that for every agent inCX there must be some agent
near its location inCY, but not necessarily thesameagent.
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Figure 3: The strip at the top represents the frames of a flocking simulation classified into configuration clusters, each indicated
with a different hatch pattern. The corresponding set of cluster configurations is shown below.

To precisely describe a configuration, we define a local,
moving configuration spacecoordinate system (Figure3).
We use this coordinate system at various stages of the con-
struction algorithm to provide a common reference frame be-
tween groups. Assume the group consists ofN agents, each
with world positionx(i) and velocity vectorv(i). At any in-
stant,t, the origin of configuration space is the center of mass
(COM) of the agents,Oc(t), and thex axis,Xc(t), is aligned
with the average agent velocity,Ȯc(t):

Oc(t) =
1
N

N

∑
i=1

x(i)(t)

Ȯc(t) =
1
N

N

∑
i=1

ẋ(i)(t)

Xc(t) =
Ȯc(t)

‖Ȯc(t)‖

Oc andXc are sufficient for a 2D coordinate system, while
in 3D we require another axis to define roll aboutXc: Yc =
̂up×Xc whereup is an arbitrary world up direction. We re-

fer to the transformation from world to configuration coor-
dinates as at timet asXc←w(t).

The assumptions on group motion could be removed if
the group behavior made them invalid (for instance, there
was a designated leader). Note that removing the identical
behaviors assumption makes construction simpler because
we could use metrics that measured the difference between
individual agents, rather than the metric we use that assumes
no correspondences between agents. Also observe that we
could handle subsets of agents with the same behaviors by
using our metric within each subset. Working in world rather
than configuration coordinates would require that velocitybe
considered when comparing agents.

Figure 4: Left is an example input frame and right is its
corresponding cluster configuration.

4.2. Configuration Clustering

The problem of finding representative configurations is one
of clustering: partition all of the configurations in the input
into subsets such that elements within each subset are sim-
ilar. The most representative configuration for each cluster
is then used as a cluster configuration node in the graph, as
we can safely say that similar configurations are common in
the input. Figure2 shows the result of clustering on a sample
segment of input.

We cluster using the standardk-means algorithm [FP03].
To begin, a set ofk configurations are chosen uniformly at
random from within the input sequence. These will be the
representative configurations for each cluster. Each configu-
ration in the input is then classified into the particular cluster
to which it is closest, using the distance metric defined be-
low. The algorithm iterates, updating the representative con-
figuration to better reflect the cluster and reclassifying con-
figurations based on the new set of representatives.

We choose the Hausdorff distance between the two point
sets as our similarity metric, because it is fast to evaluateand
works with our assumption that all agents are functionally
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the same:

Eh(tX , tY) = max{

max
i

[
min

j
d(x(i)

c (tX),x( j)
c (tY))

]

max
j

[
min

i
d(x(i)

c (tX),x( j)
c (tY))

]
}

wheretX is the time corresponding to arrangementCX , tY
is the time corresponding to configurationCY, x(i)

c (t) is the
position in configuration space of agenti at time t, and

d(x(i)
c (tX),x( j)

c (tY)) is the Euclidean distance. The Hausdorff
distance penalizes point sets with many points inX that are
not close to points inY, or vice versa, but it does not re-
quire a one-to-one correspondence between agents. Figure4
shows the closest cluster configuration for an example input
configuration.

An update scheme must be defined for the representative
configuration of each cluster. We do not require this to be one
of the configurations from the input — it is an abstract con-
figuration used to represent the cluster’s shape that we will
later map back onto a configuration from the input. To up-
date a representative, for each agent in it we find the closest
agent in each configuration in the cluster. The average po-
sition of these agents is then the new representative agent’s
position.

The clustering algorithm terminates after a fixed number
of iterations, 50 in our experiments. For each cluster rep-
resentative we use the Hausdorff distance metric to find its
closest input configuration and use this as the cluster config-
uration (Figure2).

4.3. Joining Configurations

Once cluster configurations have been found, between ev-
ery pair of configurations we construct a family of new mo-
tion clips. Explicitly constructing the paths in this way pre-
cisely defines the trajectories that can be generated from the
graph: they are piece-wise circular with an upper bound on
the length of each piece and an known upper bound on cur-
vature.

In 2D, each clip in the family joins the start and end con-
figurations along a circular arc, with one clip for each sub-
tended angle,θ, between−90◦ and 90◦ in 15◦ increments
(Figure1). The start (end) configuration’s velocity is aligned
with the tangent at the start (end) of the clip. In 3D we have a
choice for the plane of curvature: we take the 2D set of edges
and replicate them in 15◦ increments about the direction of
travel to produce a 3D fan of paths, parameterized by the an-
gle φ. Each clip in the family is of near-equal arc length. We
also create a family of self-loops for each configuration.

The arc length for a family of edges is computed based on
the difference between the cluster configurations that it joins,
as this is an indicator of how much change must take place in

the agent arrangement. Working in configuration space, we
use the bipartite matching procedure from Section5.1to find
correspondences between the agents in the node configura-
tions, and assume that each agent in the start configuration
must move to its corresponding position in the end configu-
ration while the center of mass of the flock roughly follows
the edge.

We place an upper bound,∆v, on the speed of an agent in
configuration space (the speed relative to the other agents),
typically some fraction of the group’s average velocity. The
higher the fraction, the faster the group mixes. We can then
define the minimum time and arc length required to re-
arrange the group:

TXY = max

(
Tmin,min

i

‖x(i)
c (tX)− x(MY←X(i))

c (tY)‖

(1− ε)∆v

)
(1)

lXY = TXYvtarget (2)

where TXY is the estimated clip duration for joiningCX

to CY, Tmin is the minimum transition length we allow,
MY←X(i) is a mapping from agent IDs inCX to those in
CY (Section5.1) and lXY is the estimated clip length. The
target velocity of the group,vtarget is taken from the flock-
ing simulation rules, whileε is a constant, around 0.2, used
because the behavior rules for re-arranging the group (Sec-
tion 5) compete with other rules (such as avoiding agent col-
lisions) and so cannot produce the maximum possible rela-
tive speed within the group.

If TXY is greater than a user defined maximum clip length,
Tmax, we insert additionallink nodesinto the graph between
the configuration clusters. The new nodes are connected in
sequence along the original edge, and a complete family of
clips is defined between each link node. The number of link
nodes,⌊TXY/Tmax⌋, is chosen to keep the clip length below
Tmax.

The configurations for the link nodes are found via con-
strained simulation. Consider an edge joining cluster config-
urationCX toCY in timeTXY. We constrain a flock to follow
a near-straight path, starting in configurationCX and finish-
ing in configurationCY after timeTXY. The details of this
step are described in Section5. From the resulting anima-
tion we take⌊tXY/tmax⌋ equally spaced configurations.

4.4. Statistics Collection

During synthesis, we wish to have a probability distribution
that tells us the relative likelihood of moving between two
configurations with a particular edge. These probabilitiesare
not uniform. For instance, a long stretched out flock is highly
unlikely to transition to a circular group along a straight path
because the behavior rules tend to discourage it, but such a
transition is more likely if the flock is moving on a sharply
curved path. During synthesis, the probabilities can be used
in two ways: for random synthesis they are the transition
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probabilities for a Markov process on the graph, or they can
be used to form objective functions for search on the graph.

At each nodeCi , we store the probability of transitioning
to nodeCj+ along a path of curvatureθ+ given that we en-
teredCi from nodeCj− along a path of curvatureθ−. The
probabilities are tabulated at each node, indexed by incom-
ing clip curvature and the graph node it connects to. In 3D we
must also associate a probability with changes in the plane
of curvature. In our graphs we found that the plane of cur-
vature is about twice as likely to remain the same as it is to
take a new value, and that any new value is equally likely.
We hard code this result into our sampling process, although
it could also be tabulated at the cost of larger tables.

We estimate the probabilities by stepping through config-
urations in the input and finding each one’s closest cluster
configuration in the graph. For every combination of incom-
ing and outgoing edges from the graph node (representing
a small segment of potential output motion), we compute a
weight based on how closely the graph path matches the in-
put path and configurations. This weight is accumulated in
the probability table, which we normalize after processing
all the input frames.

5. Constrained Simulation

Graph construction relies on the ability to construct clips
that take the group from one configuration to another along a
specific trajectory. We achieve this with three flocking rules
working in combination with the default rules. The input to
these rules is the target trajectory and initial and final con-
figuration for the group. We also require a mapping, or cor-
respondence, that tells us which agent in the input config-
uration maps to which in the output. This is due to our as-
sumption that all the agents are following the same rules, so
they can be substituted for each other in an arrangement. We
discuss this matching procedure first.

5.1. Agent Matching

A match between two configurations,CX at timetX andCY
at timetY, consists of a permutation,MY←X(i), that maps
agent identities inCX into those inCY. We find the op-
timal matching with maximum weight bipartite matching,
which finds the matching that minimizes the total difference
in position between corresponding agents while enforcing a
one-to-one mapping. A bipartite graph is constructed withN
nodes on the left hand side labeled 1≤ i ≤N andN nodes on
the right indexed byj . Every node on the left is connected
to every node on the right and each edge is given the weight

−
Nw/2

∑
k=−Nw/2

wk

∣∣∣x(i)
c (tX)− x( j)

c (tY)
∣∣∣
2

The matching finds the set of edges in the graph that maxi-
mizes the sum of their weights subject to the constraint that

every nodei is connected to a single nodej . Agentsi and
j are then in correspondence:MY←X(i) = j . We use the
Kuhn-Munkres algorithm [Kuh55], also called the Hungar-
ian method, to solve this problem, which runs in timeO(N3).

The matching associated with each clip is stored with the
clip. During synthesis from the graph, the currently active
matching is accumulated as clips are traversed (Section6),
so at any time it is possible to identify which agent belongs
to which path in the clip.

5.2. Constrained Flocking Rules

We define three new rules that are applied in combination
with the standard flocking rules (cohesion, avoidance, etc.).
The result is plausible flocking motion that comes very close
to meeting the required constraints.

Follow path: This rule aims to step the COM of the group
along the required trajectory, at a speed approximating the
group’s unconstrained speed. The actions of other rules
will add variation to this target speed. During every time
step, we predict the target position of the COM by advanc-
ing a constant length along the target path. The accelera-

tion applied to every agent isa =
xtarget−Oc

δt2 − Ȯc
δt where

xtarget is the target location andδt is the time step.
Match configuration: We modify Reynolds’ seeking

rule [Rey99] so that each agent attempts to move to-

ward its target location in configuration space,x(i)
target,

transformed back into world space. The “Follow path”
equation above can be used to convert this target into an
acceleration, but this results in agents flying backwards
within the flock early in the clip, as they rush to their
final configuration positions. To avoid this, we limit the
maximum speed the agent can move within the flock,
based on the time remaining to the destination and the
distance the agents must go within the configuration.

Target orientation: This rule attempts to orient the config-
uration correctly relative to the direction of travel. The
acceleration to apply is derived from the desired change
in COM velocity:a = (vtarget− Ȯc)/δt.

At the end of the alloted clip length there may be some small
deviation from the required configuration. We correct this by
standard displacement map editing of the paths.

5.3. Clip Storage

Clip storage is the largest memory consumer within the
graph structure. Rather than storing densely point sampled
agent state, we observe that most groups tend to move
smoothly and hence use B-splines to represent the trajec-
tories. The spline for each agent is parameterized by frame
number and gives the agent’s location in the configuration
coordinate system of the first frame in the clip. In other
words, every stored clip starts off with the group at the origin
heading along the positive X axis. We also keep a spline for
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the trajectory of the center of mass of the group because it is
helpful in synthesis and rendering.

If memory consumption was a major concern, clip storage
could be further optimized by storing the agents’ positionsin
configuration coordinates. Presumably these vary relatively
little over the course of the clip (depending on how fast the
agents mix), and hence could be efficiently compressed with
differential coding techniques or vector quantization.

6. Synthesis Algorithms

The process of synthesizing from a GMG is identical to that
for human motion graphs with the exception that we must
track agent correspondences. A cumulative correspondence,
Mcurrent(i) is maintained as synthesis progresses. The agent
that started as agenti uses agentMcurrent(i)’s state from
the currently active clip. Initially,Mcurrent(i) = i. At each
transition,M′current(i) = MCC′(Mcurrent(i)), whereMCC′

is the correspondences stored for the transition.

The synthesis process is independent of the method for
choosing the sequence of edges to be followed. In this sec-
tion we discuss various graph walk algorithms, each de-
signed to produce a particular target motion: random walk
using the computed transition probabilities; constraining the
group to a region; following a designated path; and planning
to meet discrete goals while avoiding obstacles.

6.1. Random Walk

Random synthesis from a GMG is a Markov process on the
graph, with the transition probabilities given by the tables
built during graph construction. Each time a transition point
is reached, we sample a new outgoing edge given the incom-
ing edge, using standard sampling techniques for tabulated
discrete distributions. While random synthesis produces rea-
sonable group motion, it offers no control over the group.

6.2. Path Following

Path following with a GMG can be done with greedy search
thanks to the well defined trajectories available out of each
transition. Paths to follow can be input in any form that en-
ables evaluation of points on the path at a given time. At
each transition point, we choose the minimum cost outgoing
edge, where cost is defined as the sum over frames of the
difference between the flock’s center of mass and the target
path.

6.3. Region Constrained

Most virtual worlds are finite in extent, and we would like to
constrain the flock to stay within the world. With traditional
flocking simulations this would be done either with collision
avoidance for the virtual walls of the world, or with other
specific rules. We don’t use those in GMGs because, while

Descr. #Conf. #Link #Edges Mem. Time

20-2D 10 0 1300 8 100
20-3D 10 0 13600 103 1000
100-2D 2 3 104 5 1100

Table 1: Data for the GMGs we have constructed. We give
a descriptive label, the number of configurations, link nodes
and edges, the total memory consumption of the graph in
MB, and the total time to construct the graph in seconds.

a virtual wall around the world may be invisible, the group’s
collision response to it will reveal its presence. With GMGs
we can give the impression that the group stays within the
region purely by chance.

The region constraint restricts the random walk on the
graph to edges that remain within the region. At each tran-
sition node during synthesis, we choose an outgoing node at
random, then conduct depth first search to find the first fu-
ture path that remains inside the region (we test the center
of mass of the group for inclusion in the region, but more
stringent tests could be used). If no such path can be found,
we choose another clip and try again. The dense connectivity
and controlled transition interval is important in this applica-
tion because it limits the depth of the search to about 4 clips
in practice.

6.4. Path Planning

There are many ways to plan paths based on a motion graph
– here we present just one that takes as input a set of destina-
tion points to be hit by the center of mass of the flock and a
set of points with radii to be avoided. We divide the problem
into n destination search problems solved in succession. We
useA∗ path planning to solve each sub-problem. The esti-
mated cost to reach the destination from the current node is
simply Euclidean distance. The sub-path cost function favors
short paths as well as those that contain likely transitions:

g(Pathn) = g(Pathn−1)−L(n)∗ ln pn

wherePathn is thenth node in the path,L(n) is the length
of edgePathnPathn−1, and pn is the probability of choos-
ing edgePathnPathn−1, taken from the tables stored in the
graph. To begin,g(Path0) = 0 and lnp1 is computed assum-
ing the group came from theθ = 0,φ = 0 incoming edge. We
setg(Pathn) = inf when the path hits an obstacle.

7. Results

We have built three demonstration GMGs, with data sum-
marized in Table1. Each flock uses different rule parameters
to produce a different style of flock motion. Memory usage
is determined by several factors. It is roughly linear in the
number of agents in the group, because we need to store tra-
jectories for each agent. The number of configuration nodes
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Figure 5: Constraining a flock to a region. The trajectory of
the flock is shown by the line.

Figure 6: A top-down snapshot of a flock following a de-
signed path constraint in 3D. The dotted green line is the
trajectory of the flock and the solid black line is the designed
path.

used and the number of link nodes required determines the
number of edges in the graph (along with the discretization
of curvature for the clips). In turn, the number of edges gives
the number of clips required and the size of the probability
tables.

The construction time of a graph depends on the number
of clusters desired – more configurations require more time
– and the total number of edges that must be simulated to
produce clips. For example, in the 20-agent graphs we built,
clustering accounted for about 70% of the time, whereas in
the 100-agent graph the clustering took about 30%. This is
primarily due to the link nodes, and hence larger number
of edges, required for the 100-agent graph. We used fewer
configurations for the 100-agent because the required link
nodes are additional configurations that add variety to the
synthesized motion without affecting the ability to satisfy

Figure 7: The left shows the trajectory of the flock in dotted
green and the designed path in solid black. The right shows a
snapshot of a human crowd with the character poses driven
by a human motion graph.

Figure 8: The overview of an entire flock motion is shown
in the left. The black line is the trajectory of the flock. The
red circles with holes are the obstacles and the solid green
circles are the destinations. Right is a snapshot of the flock
avoiding the obstacle.

constraints. This indicates that good variety can be obtained
with only a small number of dissimilar cluster configura-
tions.

The accompanying video includes animations generated
from our graphs, and demonstrates the various synthesis
techniques. Figures5 through 8 show frames from each
demonstration. We applied the graphs to both bird models
and human figures. The birds use a fixed wing-flap anima-
tion cycle while moving along the paths. To animate the hu-
mans, we use a walk cycle that is time-warped and edited to
follow the path.

The time to synthesize motion from the graph depends on
the particular method, with random synthesis being fastest
and planning the slowest. Random synthesis for 100 agents
took about 7.5ms per virtual second on a 2.4GHz P4. In other
words, for real-time playback it would consume about 0.75%
of the CPU. This compares to about 500ms, or 50%, for sim-
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ulating the same group. While the exact numbers are likely
to vary based on the precise implementation of the flocking
simulation and GMGs, the difference is practically signifi-
cant: less than 1% of CPU is a reasonable price to pay for
secondary group motion that adds realism to a virtual envi-
ronment; 10% is not. The trade-off is in memory consump-
tion, but for secondary motion applications a small graph
with few configurations is likely to be acceptable.

Other forms of synthesis are more expensive. Synthe-
sizing 20 agents constrained to a 2D region takes around
15ms per virtual second, with the additional time being spent
on look-ahead. Following a path with a 20 agent group in
3D consumes about 229ms per virtual second in an un-
optimized implementation (it is cheaper in 2D). Finally, the
time taken for planning is very dependent on the specific
constraints, as is typical ofA∗ implementations. The exam-
ple we present took 4.4s to plan 70s of output motion.

The primary limitation of GMGs, as with any data-driven
method, is that situations not in the data cannot be repro-
duced. In the context of group animation, this problem is
most apparent in environmental interactions. For instance,
the group cannot split around an obstacle unless a clip with
a similar sized obstacle is present in the pre-recorded data.
Similarly, individual agents cannot modify their motion in
response to a local environmental feature, such as another
agent not part of the group.

We could, however, mix data-driven motion with sim-
ulation. If the group approaches an obstacle, it could be
switched to simulation for a short while then forced back
into a configuration from the graph. Our techniques for
building the graph support this kind of constrained final con-
figuration. Similarly, individual agents could be simulated
while the others followed their fixed trajectories.

Our graphs are built from simulated data, and rely on sim-
ulation to produce clips with smooth transitions. We do this
because group motion typically lacks recurring configura-
tions – the equivalent of a single human’s relaxed stance or
periodic motion such as walking. Exceptions include groups
playing sports where there is some start positioning (vol-
leyball, for instance). For groups with recurring configura-
tions, GMGs could be constructed more analogously to hu-
man motion graphs, by finding matching arrangements in the
input and re-arranging the input clips to form the graph. We
attempted this approach with our input simulation data, us-
ing a modified version of the matching algorithm of Sec-
tion 5.1 to identify similar configurations (a more stringent
metric than Hausdorff distance is required because the tran-
sitions are constructed by blending rather than simulation).
However, we found that pairs of sufficiently similar config-
urations were very rare in the input data, resulting a poorly
connected graph with very long clips.

8. Conclusion

Group motion graphs offer efficient and controllable motion
for small to medium sized groups. Open problems include
creating graphs directly from captured motion and further
reductions in run-time cost. In particular, for large groups
the cost of rendering starts to dominate the cost of simu-
lating. Using ideas from video textures [SSSE00] and crowd
impostors [DHOO05], it should be possible to pre-render the
motion to textures that are billboarded into a scene. The pri-
mary challenge to overcome is view independence.

A second appealing concept is mixed simulation and mo-
tion graphs, which is more applicable for GMGs because we
work from simulation in the first place. This could be viewed
in a simulation level of detail framework, with simulation
simplified to graphs simplified to billboards, with the latter
offering the most promising way to get computational costs
that do not depend on the number of agents.
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