
GUIDED TRACE AND STITCH MODELING USING MULTIMODAL INTERACTION

by

Rajarathinam Arangarasan

A dissertation submitted in partial ful�llment of

the requirements for the degree of

Doctor of Philosophy

(Mechanical Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2007

c Copyright by Rajarathinam Arangarasan 2007

All Rights Reserved

i

Dedicated to my parents

Late. Mr. Arangarasan Rajarathinam and Mrs. Lakshmi Arangarasan

ii

ACKNOWLEDGMENTS

I would like to thank my advisors Prof. Michael L. Gleicher and Prof. Vadim Shapiro for giving me the op-

portunity to pursue my Ph.D research under their guidance. Their tremendous support and valuable guidance had a

major in�uence on this research. Prof. Michael L. Gleicher's friendly and congenial work environment signi�cantly

contributed to the positive outcome of my research, and I will always cherish the wonderful time spent together with

him. I am greatly thankful to Prof. Vadim Shapiro for his invaluable help and guidance at a critical junction in my

Ph.D program. Without their support the completion of this dissertation would not have been possible.

I would like to thank Prof. George N. Phillips Jr. for providing me an opportunity to work with him, and serving

on my thesis committee. Though only for a couple of semesters, working with him and his lab members was one of

my most memorable experiences during my Ph.D program.

I would like to thank Prof. Rajit Gadh for providing support and the opportunity during the early stages of my

Ph.D program. I would like to thank Prof. Sanjay G. Dhande, Director of Indian Institute of Technology - Kanpur,

for helping me with the �rst step of my long journey. I would like to thank Prof. Carl de Boor and Prof. Stephen

Chenney for their valuable comments that greatly in�uencedmy research. I would like to thank Prof. Amos Ron and

Prof. Suresh Krishnan for serving on my committee and providing their valuable feedback in this research.

I would like to thank my colleagues, fellow Ph.D students, and friends: in UW Computer Graphics Lab (Dr.

Lucas Kovar, Alex Mohr, Michael Wallick, and Eric McDaniel), in Spatial Automation Laboratory (Dr. Srinivas

Raghothama, Arpan Biswas, and Vasu Ramaswamy), and in ICARVE Lab (Dr. Tushar Dani, Dr. Chi-Cheng Chu, Dr.

Nuggehalli Shyamsundar, and Dr. Fan Zhao). They each helpedmake my time in the PhD program more fun and

interesting.

I thank my parents, Late Mr. Arangarasan Rajarathinam and Mrs. Lakshmi Arangarasan, for instilling in me

con�dence and a drive for pursuing my PhD. I am forever indebted to them for their unending love and affection, and

for their unconditional support in achieving my dreams. Last but not least, I thank my wife Andrea Rajarathinam for

being a constant source of encouragement and love in my life.

Rajarathinam Arangarasan

2007

DISCARD THIS PAGE

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT .. xii

1 Guided Trace and Stitch Modeling Using Multimodal Interaction . 1

1.1 Introduction 1
1.2 Motivation 1
1.3 Goal and Overview 2
1.4 Explanation of Precision, Rapidity, and Fluency 2
1.5 Overview: Guided Trace and Stitch Interface (GuTS) Modeling Approach 4

1.5.1 Curve Modeling 4
1.5.2 Surface Modeling 6
1.5.3 User Interaction 7

1.6 Thesis Statement 8
1.7 Contributions 8

1.7.1 Novel Approach 8
1.7.2 Multimodal User Interaction 9
1.7.3 Implementation 9

1.8 Structure of Dissertation 9

2 Previous Work . 11

2.1 Geometric Modeling Approaches 11
2.1.1 Control Point and Control Polygon Manipulation Approach 11
2.1.2 Snapping Approach 12
2.1.3 Drafting Approach 12
2.1.4 Tracing Approach 13
2.1.5 Pattern Matching Approach 13
2.1.6 Gesture and Sketch-Based Approach 13
2.1.7 Freeform Modeling Approach 14
2.1.8 Blob Modeling Approach 15

2.2 User Interaction Approaches 15
2.2.1 Freeform Modeling Using 6 DOF Input Devices 16
2.2.2 Customized Special Purpose Higher DOF Input Devices 16
2.2.3 Experimental Evaluations of Input Devices 17
2.2.4 Two-Handed Approach 17
2.2.5 Multiple Input Modalities Approach 18

iv

Page

3 GuTS - User's Perspective . 19

3.1 Curve Modeling 20
3.1.1 Generation of Guide Curves 20
3.1.2 Drawing and Tracing Curves 21
3.1.3 Precise Positioning and Stitching 23
3.1.4 Automatic Continuity Detection 26
3.1.5 Other Geometric Features and Operations 27
3.1.6 Dimensional Tags 32
3.1.7 Example - Guitar Model 33

3.2 Surface Modeling 33
3.2.1 Generation of Guide Surfaces 33
3.2.2 Tracing Surfaces 35
3.2.3 Stitching Surfaces 38
3.2.4 Other Surface Operations 40

4 GuTS - Implementation and Technical Details . 43

4.1 Curve Modeling - Subdivision Schemes 43
4.1.1 Interpolation vs. Approximation Subdivision Schemes . 43
4.1.2 Properties of Interpolation Subdivision Schemes 45
4.1.3 Interpolation Subdivision Curve Representations . .. 47

4.2 Curve Modeling - Bezier Representation 48
4.2.1 Properties of Bezier curves 49
4.2.2 3rd degree Bezier Curve Representation 49

4.3 Algorithms for Curve Operations 50
4.3.1 Curve Snap Mechanisms 50
4.3.2 Intersection 53
4.3.3 Gesture-Based Primitive Creation 54

4.4 Surface Modeling - Triangulated Mesh Structure 56
4.4.1 Algorithms for Surface Modeling Operations 56
4.4.2 Zero-Point Tracing 56
4.4.3 Thick-Brush Tracing 60
4.4.4 Tracing over Multiple Surfaces 64
4.4.5 Surface Intersection 66
4.4.6 Stitching Surfaces Together 66
4.4.7 Interpolation Subdivision Scheme (Modi�ed Butter�yScheme) 68

5 Multimodal User Interface . 70

5.1 Interaction Challenges in the GuTS Modeling System 70
5.2 Humans Natural Multimodal Interaction Capability 71
5.3 GuTS System User Interface Setup 73

5.3.1 GuTS System's User Interface Architecture 73
5.3.2 Pen-Based Input 77
5.3.3 6-DOF 3D Mouse Input 77
5.3.4 Speech Input 79
5.3.5 Flat Panel Tablet Display 81

v

Appendix
Page

5.3.6 Synthesized Speech Output 82
5.4 Technical Speci�cations 84
5.5 Variations of Modeling Applications with Multimodal User Interface 84

5.5.1 Molecular Modeling System 85
5.5.2 Detailed Virtual Design System (DVDS) 91

6 Results .. . 97

6.1 Examples of Curve Geometries 97
6.2 Examples of Surface Geometries 108

7 Conclusions . 125

7.1 Review of Contributions 126
7.1.1 Novel Approach 126
7.1.2 Multimodal User Interaction 127
7.1.3 Implementation 127

7.2 Pros & Cons of the GuTS Approach 127
7.2.1 Pros 127
7.2.2 Cons 128

7.3 Limitations and Future Work 128
7.3.1 Large Number of Curves 129
7.3.2 History of Modi�cations and Undo Feature 129
7.3.3 Subdivision Schemes for the Surface Mesh 129
7.3.4 Extending Surface Stitching Operations 130

7.4 Summary 130

LIST OF REFERENCES . 131

APPENDIX Design and Evaluation of the GuTS System and User Interface 138

DISCARD THIS PAGE

vi

LIST OF TABLES

Table Page

5.1 Speci�cations of multimodal user interaction components . 84

5.2 List of commonly performed tasks 89

5.3 Available I/O devices, its DOF and nature 90

5.4 Physical connection between human parts and I/O Devices. 90

5.5 Generic sketch entities and its control points and handle . 94

Appendix
Table

A.1 Key design decisions and reasons 144

DISCARD THIS PAGE

vii

LIST OF FIGURES

Figure Page

1.1 Geometric precision 3

1.2 Tracing of 2D curves from guide shapes in GuTS 5

1.3 Tracing over a 3D surface in GuTS 6

1.4 Setup of multimodal user interface 7

2.1 Curve and surface design 15

2.2 Modeling in GuTS 16

3.1 Sequence of operations and stages of geometries in GuTS .. 20

3.2 Generic guide templates - French curves and Ship curves .. 21

3.3 Scanning objects to create guide shapes 22

3.4 Sample guide shapes 22

3.5 Tracing from guide curve 23

3.6 Tracing further 24

3.7 Gravity-based point, slide and �xed snaps 24

3.8 Grid based snapping 25

3.9 Digitized french curve in the GuTS system, as user tracing a guitar sketch 26

3.10 Auto continuity detection 27

3.11 Smooth operation 27

3.12 Basic gesture recognition 29

3.13 Course / re�ne operation 30

3.14 Cut operation (point cut and region cut) 31

3.15 Vertex level twist and drag 31

viii

Figure Page

3.16 Erase (vertex and edge erase) 31

3.17 Multi-level intersection .. 32

3.18 Dimensional tags 33

3.19 Creating a guitar model 34

3.20 Point trace over guide surface 35

3.21 Thick-brush trace over guide surface 36

3.22 Tracing over guide surface using guide curves 36

3.23 Creating a leaf model through point tracing 37

3.24 Thick-brush tracing 38

3.25 Tracing over multiple guide surfaces 39

3.26 Surface stitch 39

3.27 Snap region along the boundaries 41

3.28 Cutting surface 42

4.1 Curve modeling - Functionalities and features 44

4.2 Masks for 2-point, 4-point, and 6-point interpolation schemes . 46

4.3 Gravity �elds 51

4.4 Snapping Mechanisms: point, slide, and �xed snaps 52

4.5 Multi-level intersection 54

4.6 Gesture recognition algorithm 55

4.7 Surface modeling - Functionalities and features 55

4.8 Triangular face structure 56

4.9 Face split 58

4.10 Edge split 59

4.11 Projection curve - Bisects face .. 60

4.12 Projection curve - Coincides with an edge 61

4.13 Projection curve - Lies within a face 61

ix

Appendix
Figure Page

4.14 No unique projection curve 61

4.15 One vertex inside 62

4.16 Two vertices inside 63

4.17 Two vertices `On' 63

4.18 Only edge intersects 63

4.19 Trace around intersection point 64

4.20 Tracing over multiple surfaces .. 65

4.21 Inserting intersection curve .. 67

4.22 Masks for regular and extraordinary vertices 68

5.1 Mapping of tasks in the GuTS system for traditional I/O devices (if traditional I/O devices are used) . . . 72

5.2 Con�guration of I/O eevices in the GuTS system 74

5.3 Layout of the GuTS system's user interface architecture. 74

5.4 Mapping of tasks with I/O devices in the GuTS system 76

5.5 Pen data tablet and its functionalities 78

5.6 3D mouse and its functionalities in the 2D mode 80

5.7 3D mouse and its functionalities in the 3D mode 80

5.8 Windowing in the GuTS system 83

5.9 Control tabs in the GuTS system 83

5.10 Molecular modeling using `Fishtank VR' interface 85

5.11 Different components in the molecular modeling system. 86

5.12 System architecture of the molecular modeling system .. 86

5.13 User modeling molecular structure in front of the immersive display . 88

5.14 Matching tasks and modes 91

5.15 Layout of DVDS architecture 92

5.16 DVDS - System architecture 93

5.17 Sequence of feature manipulation operations in conventional CAD systems 94

x

Figure Page

5.18 Sequence of feature manipulation operations in DVDS . .. 94

5.19 Gestures in DVDS 95

5.20 User in front of DVDS immersive display 96

6.1 Illustrative sketch of a moose head 98

6.2 Illustrative sketch of a car 99

6.3 Illustrative sketch of a boat 100

6.4 Illustrative sketch of a sword 101

6.5 Illustrative sketch of a �ower and plant 103

6.6 Diagram of a guitar 104

6.7 Diagram of a pen 105

6.8 Creating curve geometries (using Bezier representation) . 106

6.9 Creating an headset/earphone using various guide shapes . 107

6.10 Guitar model 108

6.11 Bottle model 109

6.12 Pen model 111

6.13 Creating a leaf model through zero-point tracing 112

6.14 Freeform zero-point tracing of characters 113

6.15 Sun-glass model through zero-point tracing 114

6.16 Creating surface geometries (from Bezier curves) 115

6.17 Tracing through thick-brush 116

6.18 Lamp models 118

6.19 Abstract model - Designed through multiple guide shapes . 119

6.20 Spatula (cooking utensil) model 120

6.21 Car bumper model 122

6.22 Car wheel model 123

6.23 Face mask model 124

xi

Figure Page

Appendix
Figure

A.1 Design and study of the GuTS system user interface 138

GUIDED TRACE AND STITCH MODELING USING MULTIMODAL INTERACTION

Rajarathinam Arangarasan

Under the supervision of Professors Michael L. Gleicher andVadim Shapiro

At the University of Wisconsin-Madison

Freeform modeling is an integral part of the geometric modeling and design process. Existing freeform modeling

systems expect the user to be familiar with the geometric representation and user interface in order to model precisely

and rapidly. As a result, modeling complex freeform geometries precisely and rapidly can be quite dif�cult.

In this thesis, we address the problems manifested in current freeform modeling systems. We introduce a novel

modeling approach called “Guided Trace and Stitch” (GuTS) which designs curves and surfaces precisely, �uently

and rapidly. To achieve its ends, the GuTS modeling approachhas multiple components - tracing, snapping, stitching,

and a multimodal user interface. GuTS creates new curves andsurfaces by tracing prede�ned geometries to create an

accurate replica of the existing model, hence achieving precision. The GuTS modeling approach also allows multiple

geometries to be snapped together. As a result, multiple geometries are easily and rapidly traced over and stitched

together to create a complex geometry, hence achieving rapidity and precision.

The GuTS modeling approach raises several challenges for user interaction in interactive modeling. However, to

address these challenges, we implemented the idea of a multimodal user interaction which uses two-handed input,

3-dimensional mouse input, pen and data tablet, voice input, and synthesized speech output. Basically, the goal was

to create a user interaction which adapts natural interactions in the modeling realm. This multimodal interface is

designed in such a way as to provide �uent and direct interaction. Further, the simultaneous use of multiple input and

output modes through effective coordination provides rapid interaction.

We also implemented a software system based on this approachcalled the “GuTS System”. The GuTS modeling

approach is independent of the underlying data structure. To demonstrate, the GuTS approach is implemented using

Subdivision curves and Bezier curves representation in two-dimension, and using tessellated geometry representation

in three-dimension. This system demonstrates that the GuTSmodeling approach is feasible. Using the GuTS system,

we created several sample complex freeform geometries to demonstrate the practical usability of this system.

Michael L. Gleicher and Vadim Shapiro

xii

ABSTRACT

Freeform modeling is an integral part of the geometric modeling and design process. Existing freeform modeling

systems expect the user to be familiar with the geometric representation and user interface in order to model precisely

and rapidly. As a result, modeling complex freeform geometries precisely and rapidly can be quite dif�cult.

In this thesis, we address the problems manifested in current freeform modeling systems. We introduce a novel

modeling approach called “Guided Trace and Stitch” (GuTS) which designs curves and surfaces precisely, �uently

and rapidly. To achieve its ends, the GuTS modeling approachhas multiple components - tracing, snapping, stitching,

and a multimodal user interface. GuTS creates new curves andsurfaces by tracing prede�ned geometries to create an

accurate replica of the existing model, hence achieving precision. The GuTS modeling approach also allows multiple

geometries to be snapped together. As a result, multiple geometries are easily and rapidly traced over and stitched

together to create a complex geometry, hence achieving rapidity and precision.

The GuTS modeling approach raises several challenges for user interaction in interactive modeling. However, to

address these challenges, we implemented the idea of a multimodal user interaction which uses two-handed input,

3-dimensional mouse input, pen and data tablet, voice input, and synthesized speech output. Basically, the goal was

to create a user interaction which adapts natural interactions in the modeling realm. This multimodal interface is

designed in such a way as to provide �uent and direct interaction. Further, the simultaneous use of multiple input and

output modes through effective coordination provides rapid interaction.

We also implemented a software system based on this approachcalled the “GuTS System”. The GuTS modeling

approach is independent of the underlying data structure. To demonstrate, the GuTS approach is implemented using

Subdivision curves and Bezier curves representation in two-dimension, and using tessellated geometry representation

in three-dimension. This system demonstrates that the GuTSmodeling approach is feasible. Using the GuTS system,

we created several sample complex freeform geometries to demonstrate the practical usability of this system.

1

Chapter 1

Guided Trace and Stitch Modeling Using Multimodal Interaction

1.1 Introduction

Freeform modeling is integral to the design and modeling process. The ability to create precise freeform curves

and surfaces is a vital part of applications such as illustration, design and analysis. The challenge of precise freeform

curve and surface modeling arises out of the creative natureof freeform modeling. Complex geometries can be created

by either building off of existing curves and surfaces or by building something completely from scratch. Freeform

modeling is unlimited by a creator's ideas but is hindered bycurrent technology. As a result, a model ahead of current

technology can be dif�cult to specify and manipulate interactively. The current freeform modeling systems provide

either precision or �uency, but not both simultaneously. Since both precision and �uency are important in the design

process, the lack of either one can be quite frustrating to the user.

In this research we introduce a novel modeling approach called “Guided Trace and Stitch” (GuTS) modeling

using multimodal user interaction which provides precision, rapidity, and �uency all at the same time. The term

“multimodal” means “having more than one mode”[5], “two or more modes of operation and it is used to refer to

a myriad of functions and conditions in which two or more different methods, processes or forms of delivery are

used”[6]. As it relates to this research (i.e. human computer interaction), multimodal means the use of multiple

different communication channels to extract and convey information between computer and user.

1.2 Motivation

Recent growth in computing power allows users to design complex geometries that were not possible earlier.

As the complexity of geometry increased, issues surrounding performance and user interface increased considerably.

Some signi�cant approaches to address the above problems are: improvement of geometric representation, creation of

ef�cient algorithms for real time geometric manipulations, and improvement of input/output (I/O) devices for effective

user interface. Most modeling applications use a control point-based approach to precisely model complex geometries.

To design complex geometries precisely and rapidly, the user needs knowledge of the geometric representations and the

system's user interface. Limitations, such as indirect manipulation, lack of knowledge of geometric representations

and user interface of the system, become signi�cant when designing complex freeform shapes involving multiple

2

geometries. To improve user interaction some research, discussed in Chapter 2, used higher degrees-of-freedom

(DOF) I/O devices along with a simpler mesh structure to represent the geometries. These interaction approaches

provide direct and �uent manipulation but lack precision. Some research focused on achieving precise modeling but

lacked �uency and directness. Other research focused on �uency and directness but compromised precision. A trade

off always existed between precision, �uency, and rapidity.

Many modeling situations bene�t from precise, �uent and rapid freeform modeling. For example, in the �nal

stages of conceptual design, the ability to create precise shapes validates the conceptual model directly. Another

example is the ability of novice users to design complex geometries precisely and rapidly. In situations like these all

three characteristics - precision, �uency and rapidity - play a vital role.

1.3 Goal and Overview

Our goal is to conceive, build, and implement a system to design complex curves and surfaces precisely, �uently

and rapidly. To achieve this goal, we introduce a novel approach called “Guided Trace and Stitch” (GuTS) modeling

using multimodal interaction.

In the GuTS modeling approach, pieces of new curves and surfaces are traced from guide shapes and stitched

together to create complex shapes. Precise segments of geometries are created by tracing over the guide shapes. Au-

tomated snapping and user interaction mechanisms precisely place the geometries and rapidly manipulate multiple

geometries. Thus precision is achieved through guided tracing over the guide geometries (for both curves and sur-

faces). Automated snapping mechanisms for the curves set the de�nition of precise conditions with minimal input

from the user, eliminating additional input and time.

Achieving precision and rapidity using the GuTS modeling approach raises several issues for user interface. To

address these issues we used multimodal user interaction, such as two handed input, 3-dimensional (3D) mouse input,

pen and data tablet, voice input, and synthesized speech output. By effectively using multiple input and output modes

simultaneously, the user interface is designed to achieve �uency, direct interaction, and rapidity.

1.4 Explanation of Precision, Rapidity, and Fluency

A brief explanation of the terms precision, �uency, and rapidity will be useful.

The de�nitions of precision and accuracy are de�ned as [1, 9]:

“Precision is usually characterized in terms of the standard deviation of the measurements, sometimes

called the measurement process's standard error. Precision is sometimes strati�ed into: Repeatability -

the variation arising when all efforts are made to keep conditions constant by using the same instrument

and operator, and repeating during a short time period; and,Reproducibility - the variation arising using

the same measurement process among different instruments and operators, and over longer time periods.

3

Figure 1.1 Geometric precision

Accuracy can be said to be the `correctness' of a measurement, while precision could be identi�ed as the

ability to resolve smaller differences.”

For further clari�cation to the readers, the difference between precision and numerical accuracy is explicitly dis-

cussed with an example. In this thesis we use precision for geometric modeling, further referred to as geometric

precision. Geometric precision represents the ability to consistently recreate or realign multiple geometries (curves

and surfaces) with desired properties such as shape, continuity, and relationships. Geometric precision can be withina

single geometry or as a geometric condition between multiple geometries. Figure 1.1 shows two examples of geomet-

ric precision. In Example 1, as the user traces over a guide curve, a new curve is created that is an exact replica of the

input guide curve. The curve is exactly reproduced irrespective of the number of times it is traced, maintaining preci-

sion within a single geometry. In Example 2, as two geometries are brought closer, they snap such that the tangents

are exactly in the opposite direction (i.e. 180�). Again, irrespective of how many times these two objects are brought

closer, they will always snap such that the same tangency condition is produced. This ability to consistently recreate

the properties of a geometry or between multiple geometriesrepresents geometric precision.

On the other hand, numerical accuracy is the degree of conformity of a measured or calculated quantity to an

actual value. For example, accuracy could be measured by thenumber of decimals places that are used to represent

a numerical value. In the above case, when we mention 180� (actual value or target value), both 180.000001� and

179.999999� will be considered equal to 180� with up to 5 decimal places accurate. Unless explicitly mentioned

otherwise, in this research the term precision refers to geometric precision, rather than numerical accuracy. Further

details about precision and accuracy can be found elsewhere[1, 9].

4

Fluency is de�ned as “the property of a person or of a system that delivers information quickly and with expertise -

�uency indicates a very good information processing speed,i.e. very low average time between successively generated

messages” [97]. Fluency is not associated with any particular task. It is the state of being able to smoothly and easily

perform a given function or task. With respect to this research, �uency is de�ned as a sequence of events or an

approach the user is already familiar with and/or able to perform with ease. In addition to familiarity, the system also

should respond as a user normally expects in order to maintain the ease of use. Simply stated, �uency shortens the

learning curve and anticipates the user's outlook. Thus �uency is a combination of familiar approach, ease of use, and

expected natural response from the system.

Rapidity is the ability to perform a task or operation in a short period of time. It is measured directly in terms

of time and indirectly by the number of operations needed to perform a certain task and ease of use. We measure

the success of the GuTS modeling approach in terms of rapidity if the system allows the user to complete modeling

operations faster than another similar modeling system.

1.5 Overview: Guided Trace and Stitch Interface (GuTS) Modeling Approach

The following section brie�y discusses the GuTS modeling approach and is divided into three sections: curve

modeling, surface modeling, and user interaction. The curve modeling and surface modeling sections focus on the

modeling of curves and surfaces through the Guided Trace andStitch (GuTS) modeling approach. The user interaction

section focuses on the design of an effective user interfacewith multiple I/O modalities that suit the GuTS modeling

approach.

1.5.1 Curve Modeling

GuTS creates complex curves by stitching together pieces ofcurves that are traced from a set of guide curves. The

three basic steps in creating complex curves are:

1. Tracing and drawing pieces of curves from guide shapes

2. Positioning the guide shapes precisely to an existing curve

3. Stitching the pieces of curves together

In GuTS the new geometry is created by tracing over the guide shapes. By looking at the guide shapes the user will

know exactly the shape s/he is going to create. This is the “What You See Is What You Get” (WYSIWYG) modeling

approach. It also eliminates the user's need to be familiar with geometric representation and the GuTS modeling

approach.

The primary mechanism to create curves in GuTS is to draw themdirectly using a pen-based input device just as

with the paper and pencil drafting process (refer Fig.1.4) .More precise shapes are created by using guide shapes and

5

Figure 1.2 Tracing of 2D curves from guide shapes in GuTS

snap tools that help precisely position the cursor (drawingposition). Guide curves for tracing can be of any shape or

any type (lines, arcs, or freeform curves), including curves created in GuTS system. This �exibility allows GuTS to

be easily adapted to create a wide range of complex shapes fordifferent applications. Guide shapes are transformed

as needed by the user so that curves can be placed where needed. Our preferred mechanism for positioning guides

is to use a 3D mouse in the non-dominant hand, allowing the user to position, rotate, and scale a guide while tracing

it with the dominant hand using a pen tablet. Since this directly mimics the drafting process, it provides �uency and

a direct approach to drawing curves. Figure 1.2 shows three images using GuTS. The �rst image shows tracing over

guide geometries, the second image shows a complex curve created after tracing over guide curves, and the third image

shows a different resulting complex curve that is traced differently but from the same input guide curves.

In GuTS, snapping is performed at different levels. Snapping mechanisms establish precise relationships between

multiple geometries with minimal user input or loss of time.Snapping the cursor is the mechanism by which precision

is achieved during the tracing operation. Snapping the guides to existing curves creates the connection between

the geometries for tracing. Relationships between curve segments are also precisely achieved by using snapping

mechanisms. To assist in the creation of precise relationships between segments, the GuTS approach provides a set of

snapping operations for positioning the guide curves. These snapping mechanisms are variants of gravity �elds [93].

When a guide curve is close to a relationship with existing curve pieces, it snaps to a position that precisely establishes

these relationships. Once snapped, this relationship is maintained as the user further manipulates the guide, until the

guide is pulled away from the precise relationship. Though snapping mechanisms were used earlier [23, 24, 25] in

the modeling process, geometries were snapped mainly to points and straight lines using mouse cursor position. In

GuTS, several snapping mechanisms, such as one-point snap,two-point snap, slide snap and conditional snaps such

as tangential and perpendicular snaps, are used to achieve relative alignment; and absolute position and orientation

alignment is achieved using grid-based snapping. Other geometric operations, such as cutting, smoothing, joining,

sweeping curves to create surfaces, and level of detail, also work in the GuTS system.

6

Figure 1.3 Tracing over a 3D surface in GuTS

The GuTS approach is independent of the underlying geometric representation and can be implemented using var-

ious geometric representations. To demonstrate the feasibility, we implemented the GuTS system using two different

representations: Subdivision curves and Bezier curves representation in two-dimension (2D) and tesselated geometry

representation in three-dimension (3D). From now on to distinguish between the GuTS modeling approach and the

implemented software system, the approach is referred as the “GuTS modeling approach” or the “GuTS approach” or

simply “GuTS”, and the software system is referred as the “GuTS system”.

1.5.2 Surface Modeling

In GuTS, surfaces are modeled using similar approaches as curve modeling. Several of the features – such as

guided trace, stitch, intersect, and smooth – that are performed in curve modeling are extended to surface modeling.

In GuTS new surface patches (or pieces) are created by tracing over guide surfaces. A desired surface patch is

produced by selecting a region on the guide surface through tracing. This tracing approach easily creates complex

surface patches that cannot be created with ease using the conventional sweeping approach. For completion, the GuTS

system also allows creation of surfaces through conventional operations, such as extrude, revolve, and sweep.

Tracing the surface patches from guide shapes is primarily done in two ways:

1. By using a point pen to draw a curve directly over the guide surface to specify an enclosed region

2. By using a thick brush to paint over the guide shapes to select portions of the guide surfaces

Both of these approaches produce the same resulting surfacepatch, but each approach serves its own purpose

depending upon the tracing region. A detailed description of the tracing operations is presented in later chapters.

Figure1.3 shows three images. The �rst image shows a 3D surface geometry with a curve (letter `G') traced over

it. The second image shows a couple of characters trimmed outfrom the surface and a third letter being traced. The

third image shows after the word `GuTS' was traced out from the input surface.

7

Figure 1.4 Setup of multimodal user interface

Often complex surfaces are produced by merging several surfaces together. Hence, once the pieces of surfaces are

created as discussed above, they are stitched together to form the �nal desired complex surface. The GuTS system

allows tracing over multiple guide shapes and produces a complex surface transparently.

1.5.3 User Interaction

The GuTS approach, like other modeling approaches, provides unique challenges for the interface to a design

program. For example, in the GuTS approach a user must manipulate both the guide geometries as well as other (non-

guide) geometries. Our implemented prototype system explores solutions to these challenges and attempts to maintain

the direct approach and rapidity of the user interface. Whilethe GuTS approach can be implemented with conventional

keyboard, 2D mouse and monitor environments, we used multimodal interaction with multiple I/O devices to enhance

the ease of use which then helps achieve rapidity and �uency.

We used a two-handed interface to achieve a natural and direct modeling interface, similar to the drafting pro-

cess. The user holds a stylus-pen in his dominant (right) hand and a 6 degrees of freedom (DOF) 3D mouse in his

non-dominant (left) hand (refer Fig.1.4). A key advantage to the 3D mouse over 2D devices is that it allows direct

manipulation of 6 DOF in the 3D environment. A pen in the dominant hand is used to sketch and trace over the

geometries. A �at panel display with integrated data tabletallows the user to draw the curves directly on the monitor

as if drawing on a sheet of paper. This con�guration of the data tablet and pen provides effective hand-eye coordina-

tion during the tracing operation. The non-dominant hand isused mainly to control imprecise manipulations, such as

rotating the object. The automated snapping mechanisms achieve precision from imprecise input. Apart from control-

ling the guide shapes, other coarse level controls such as transforming the geometries, scaling, and panning are also

performed by the 3D mouse in the non-dominant hand. This allows manipulating the geometries without diverting the

user's current operation.

8

The GuTS system effectively uses input devices in both of theuser's hands simultaneously. Hence, during mode

switches and when invoking commands that are performed using menu selections in conventional systems, the current

operation and work�ow are not interrupted. We also use additional input mechanisms such as speech input to issue

voice commands and perform mode switches without interrupting the current operations being performed using both

the hands.

It is important to provide the user with a steady stream of feedback that includes the state of the system. In

addition to the cues and visual output such as graphical displays, symbols and colors, we use auditory feedback with

synthesized speech output to provide additional uninterrupted feedback. In some cases, voice output is a mechanism

to guide the users actions. We believe this leads to interfaces that allow the user to keep his visual attention focused

on the current operation, without the distraction of dialogboxes or text output windows.

Humans possess the natural ability to interact with each other through multiple modes concurrently in day-to-day

communication. By utilizing this natural ability, our prototype of multimodal interaction provides the user with two-

handed and aural inputs, good hand-eye coordination, and, visual and speech outputs. Since these I/O modes imitate

the real-world interactions of humans, they present a familiar, effective and direct approach of interaction between the

system and the user. Rapid interaction is achieved since theuser interacts with multiple I/O modes simultaneously. A

detailed discussion of the multimodal user interface in theGuTS modeling approach is presented in Chapter 5.

1.6 Thesis Statement

My thesis is that one can design complex curves and surfaces precisely, rapidly, and �uently using a Guided Trace

and Stitch (GuTS) modeling approach with multimodal user interaction.

I support this thesis statement by presenting the concept ofthe GuTS approach and its novely; by showing that

the approach is feasible by providing a set of algorithms suf�cient for implementing it; and by demonstrating an

implemented prototypical system to support that this approach is feasible in practice.

1.7 Contributions

1.7.1 Novel Approach

One of the primary contributions is the introduction of a novel approach called Guided Trace and Stitch (GuTS)

modeling using multimodal interaction to model freeform geometries precisely, �uently and rapidly. In the GuTS

approach geometries are created using three operations: guided tracing, automatic snapping, and stitching. Precision

is achieved through guided tracing operations (for both thecurves and surfaces) and automated snapping mechanisms

(for curves). Since the tracing operation is direct and �uent, it eliminates the need for user knowledge of the under-

lying geometric representation. The GuTS approach also allows creation of complex geometries through tracing over

multiple guide geometries.

9

Secondary contributions within the GuTS approach include:(a) new snapping mechanisms, such as pivot snapping,

slide snapping, and two-point snapping, and (b) an algorithm to trace over curves and surfaces that allows pieces of

curves and surfaces to be traced and stitched together to form complex shapes transparently.

I support these claims of a novel approach by:

� Showing no other similar system exists that does similar tasks with a similar multimodal user interface.

� Comparing with some of the existing software systems (and their features) and highlighting how the GuTS

modeling approach is novel (for curve modeling, for surfacemodeling, and the multimodal user interface).

1.7.2 Multimodal User Interaction

The second primary contribution is the introduction of a multimodal user interface that provides a direct approach

to manipulation and interaction, and enables rapid design through uninterrupted multiple I/O modes. This multimodal

user interaction brings out the potential of the GuTS approach by expanding and exploring the way a user manipulates

curves and surfaces.

I support these claims of the multimodal user interaction by:

� Comparing with other modeling systems how (and if) they use multimodal interface in geometric modeling.

� Highlighting how multimodal user interaction is uniquely integrated with the GuTS approach of geometric

modeling.

1.7.3 Implementation

The concepts of the GuTS approach needed to be tested for practicality. As part of this research, we designed

and developed an interactive prototype system, called the GuTS system, that demonstrates the GuTS approach with

multimodal user interaction. The results of the prototype demonstration con�rm the feasibility of this novel modeling

approach. The implementation of the GuTS system itself is not a contribution, but the lessons learned through the

implementation helped re�ne the GuTS approach iteratively.

I support these claims of implementation by:

� Demonstrating a working prototype system and highlight different features of the GuTS approach.

� Explaining how this implementation can be extended to othertypes of geometric modeling (i.e. using different

geometry representations) and variations of user interface.

1.8 Structure of Dissertation

The rest of the dissertation is organized as follows:

10

Chapter 2 describes related previous research performed inthe following areas: curve modeling, snapping mech-

anisms, surface modeling, multiple con�guration of I/O devices, and analysis of 6 DOF input devices and user in-

teraction approaches. A review of the previous work helps tounderstand the earlier geometric modeling and user

interaction approaches. The review also clari�es how past research lacks precision, rapidity, and �uency at the same

time which then becomes the starting point of the GuTS theory.

Chapter 3 explains the user's perspective of the GuTS modeling approach in detail. This chapter focuses on the

user's viewpoint of the GuTS approach and its unique features - such as tracing, snapping, stitching, etc. This is

followed by example geometries created using GuTS. This chapter visualizes the GuTS approach from the user's

point of view.

Chapter 4 discusses in detail the geometric representation, underlying data structures, geometric algorithms for

several features, and other technical details of the GuTS system for curve and surface modeling. The algorithmic

details presented in this chapter serve as the mathematicalvalidity of the GuTS modeling approach.

Chapter 5 describes the GuTS system architecture, multimodal user interface, multiple I/O devices, multiple

modalities and its synchronization. Discussion in this chapter explains the concept of multimodal user interaction

and its effective usability in the GuTS system.

Chapter 6 presents the sample models created using the currently implemented GuTS system. These examples

serve as a proof of feasibility of the GuTS approach in practice. Also, discussion of how these models could not be

produced by other software with the same results is presented.

Chapter 7 summarizes the dissertation.

11

Chapter 2

Previous Work

In this chapter, the related research is divided into two categories: geometric modeling and user interaction. In

the geometric modeling section, we will discuss different types of modeling approaches while in the user interaction

section we will discuss different types of input/output (I/O) devices and user interaction approaches.

2.1 Geometric Modeling Approaches

Several modeling approaches were implemented in the past tomodel curves and surfaces interactively. Some

of the widely used freeform manipulation and modeling approaches are: control point and control polygon-based

manipulation, snapping, drafting, tracing, pattern matching, gesture and sketch-based, and blob modeling.

2.1.1 Control Point and Control Polygon Manipulation Approach

Interactive drawing began with Ivan Sutherland's Sketchpad system [93], where a light pen is used to draw shapes.

Rather than tracing the paths of shapes, as with paper and pencil, points were placed to de�ne the geometries. To

date, this is the dominant paradigm in drawing interfaces: geometry is controlled through a small set of points, such

as the end points of lines. One advantage to the control pointmanipulation approach is that by placing the control

points precisely, a precise geometry is produced. The control point manipulation approach is simple and direct for

modeling simple geometries such as lines, arcs, circles, etc. However, the same cannot be said for modeling freeform

geometries. Control point manipulation becomes tedious, time consuming, and requires expertise in geometric model-

ing in the case of freeform geometries - especially complex ones. Also, the manipulation of control points in freeform

shapes is limiting as it requires the user to think in terms ofcontrol points rather than the geometry itself. Recent mod-

eling software allows geometries to be edited directly, butstill the user needs knowledge of the underlying geometric

representation in order to model freeform geometries precisely and rapidly.

12

2.1.2 Snapping Approach

Methods such as gravity �elds [93], grids, and Snap-Dragging [23, 24, 25] are used to precisely position con-

trol points. In this research, snapping mechanisms precisely position a point to construct curves in 2D and planar-

faced objects in 3D. Since points can be placed precisely, this approach is signi�cant and widely accepted in control

point/polygon manipulation modeling approaches. Despitethis, it is not suitable for freeform modeling. This re-

search is a good starting point for the snapping idea and helps us extend new snapping mechanisms into our freeform

geometric modeling research.

Baudelaire et al. [21] introduced planar maps to create new shapes by sketching planar shapes of regions, called

“map sketching”. In this research multicolored, multi-contoured shapes are constructed through iteration of three basic

steps: drawing, erasing, and coloring. First, multiple curves are drawn. Then, the unnecessary portions of the curves

are erased. Finally the geometries and regions are colored to achieve the �nal shape. The geometric primitives used

in the research are lines, arcs, circles, ellipses and Bezier curves. Recently, Asente and Schuster [16] extended this

planar map concept to a system called “Live Paint” that is available as a feature in the commercial illustration software

AdobeR IllustratorR CS2. While this research provided an unique approach of drawing and erasing multiple curves

together to form a �nal shape, it did not focus on creating theinitial geometries or on creating freeform surfaces. The

GuTS approach, on the other hand, does provide a way to create, modify and manipulate both curves and surfaces

using the same approach.

Honda, et al. [56] discussed an interaction technique called “integrated manipulation” that allows basic operations

such as move, rotate and scale without switching mode. Basedon the relative starting cursor position to the geometries,

one of these basic operations is automatically chosen. In addition to this, based on proximity, a line segment snaps

to other existing points or aligns with other existing line segments. While this approach provides a way to avoid

switching mode, this is limited to only line segments. In theGuTS system, we apply different methods to avoid mode

switching.

Igarshi, et al. [60, 59] showed a drawing system using prediction and cleanup for rapid creation of precise drawings.

From the user's free stroke the system identi�es the appropriate constraints, creates a precise geometry progressively,

and beauti�es automatically. The user's straight line strokes and corresponding constraints allow this system to draw

line segments only. Unlike this technique, the tracing technique in the GuTS approach creates any forms, including

curves and surfaces, rapidly and precisely - not just line segments.

2.1.3 Drafting Approach

Singh [91] presented a digital version of the drafting process through the use of French curves. In this research a

methodology is provided to represent French curves in a digital format using elliptical arcs. Precision and �uency are

achieved by mimicking the traditional drafting process. This research focused only on French curves and elaborated

13

a way to create French curves digitally, which then uses themfor tracing. Even though this research is limited to

French curves, it provides some initial ideas about the tracing operation for curves and furthers our research directly

by considering complex guide curves as well as guide surfaces. In the GuTS approach, de�ning and tracing is only a

subset of the modeling approach.

2.1.4 Tracing Approach

In the commercial modeling system called Maya
TM

[73] from AutoDeskR , NURBS-based curves are drawn on

top of the NURBS surface to select a region. While this approach is similar to our research, there are considerable

differences. First, our research used curve modeling through a tracing operation which is not available in Maya
TM

.

Second, we used polygonal mesh instead of a NURBS or subdivision surface representation. Finally, our research

showed multiple geometries can be used together directly during the tracing operation but in this commercial system

only one surface geometry can be used at a time.

2.1.5 Pattern Matching Approach

Arvo et al. [15] described “Fluid Sketches” for recognizingprede�ned basic entities automatically from the user's

raw input strokes. Baudel [20] discussed shape matching, where the user sketches spline curves through direct strokes

rather than control points. Yang et al. [99] used sketch-based modeling to create 3D parameterized objects from 2D

sketches. In this system the input sketch is matched to existing 2D templates - requiring prior domain knowledge.

In these approaches the user's strokes identify the desiredshape and easily create the geometries. Both the above

approaches are very limiting since they recognize only a setof prede�ned curves and do not extend for any general

freeform curve or surface modeling.

2.1.6 Gesture and Sketch-Based Approach

Some systems achieve �uency by constructing 3-dimensional(3D) shapes automatically from the input of 2-

dimensional (2D) freeform strokes. Cohen et al. [38] described an approach of creating spatial curves from two

2D input drawings - one for the curve as it looks from the current viewpoint and the other for its shadow on the

�oor. While this approach allows the creation of 3D curves rapidly by inferring the input strokes, it does not help in

modeling precise geometries. In “Sketch” [100] a gesture-based interface allowed rapid modeling of CSG-like models

consisting of simple shapes. Although this system providesprecision through constraints, it is suitable only for simple

shapes rather than complex freeform geometries. In “Teddy”[61] plausible 3D polygonal surfaces are created directly

from the input of freeform planar strokes. This approach is easy and rapidly constructs 3D shapes, but it creates

approximate rather than precise geometries. In the GuTS approach precision, �uency, and rapitidy is achieved through

guided trace, automated snapping, and stitching processes.

14

In recent years, as pen and tablet computing systems became widely and cheaply available, sketch-based modeling

became more popular. Due to the increased popularity of sketch-based modeling in recent years, a dedicated full

sketch-based modeling course [68] was given at Siggraph - one of the largest international graphics conferences.

Several sketch-based systems were developed in recent years. Ijiri et. al. [62] used a sketch interface for modeling 3D

�owers and leaves. Karpenko et al. [63] discussed the “SmoothSketch” system that creates 3D freeform shapes from

complex sketches of visible contours of shapes. Kho and Garland [64] used sketching for interactive deformation of

unstructured polygon meshes. Watanabe and Igarashi [95] used a sketch-based interface for terrain modeling. Nealen

et al. [75] used a sketch-based interface for detailed mesh editing. Schmidt et al. [87] used sketch-based modeling

with a blob tree to model hierarchical implicit models. All of these examples highlight the signi�cance and popularity

of sketch-based modeling, something we use in the GuTS approach.

Oh et al.[80] discussed a concept system called “SESAME” to sketch, extrude, sculpt, and manipulate geometries

easily. This system only works with simple geometries and straightline extrusion. Therefore, it is not suitable for

freeform surface modeling. Mizuno et al. [74] presented a user interface for a virtual sculpting system where a

pressure sensitive pen carves a workpiece. This approach depicts the real world chiseling process in a virtual space,

but it is not suitable for freeform modeling.

2.1.7 Freeform Modeling Approach

Some of the early research, such as Sederberg et al. [90], described a freeform deformation (FFD) approach to

solid geometric models (represented in CSG or B-Rep). Terzopoulos et al. [94] described Dynamic-NURBS (D-

NURBS) as a way to directly manipulate through simulated forces and local and global constraints. This is done by

incorporating mass distributions, internal deformation energies and other physical quantities into the regular NURBS

geometric substrate. Borrel et al. [32] described a new way of modeling freeform deformations on surfaces using

constraints called “Simple Constrained Deformations”. Constraints in this approach are posed on a local region of a

surface which is modi�ed such that the de�ned constraints are satis�ed. Biermann et al. [26] described a method of

computing approximate results of boolean operations applied to freeform solids bounded by multiresolution subdi-

vision surfaces. Biermann et al. [27] discussed a cut-and-paste tool to copy geometric features from one surface to

another on multiresolution surfaces, but this has limited usefulness due to constraints on the type of shapes and the

lack of real-time interaction. Zwicker et al. [108] presented a system called “Pointshop 3D” that allowed interac-

tive shape and appearance editing of 3D point-sampled geometry by generalizing conventional 2D pixel editors. The

above research - unlike the GuTS approach - requires a thorough understanding of geometric modeling and underlying

geometric representation to create complex freeform geometries rapidly and precisely.

15

Figure 2.1 Curve and surface design

2.1.8 Blob Modeling Approach

Markosian et al. [72] described a system called “Skin” to create freeform shapes using a particle-based surface

representation that resembled blob modeling. The system allowed a wide range of skeleton shapes, creases and multi-

resolution through subdivision representation. Interesting smooth freeform surfaces are easily created from simple

input shapes. Due to the nature of blob modeling, this approach - unlike the GuTS approach - produces only approxi-

mate geometries and is not suitable to create precise freeform shapes.

As a summary: Fig. 2.1 shows the current widely used methods for designing curves and surfaces. The common

approaches are: to �t surfaces to point sets, to create curves and loft surfaces using curves, or to construct surfaces

directly in 3D. In Fig. 2.1, the thick solid lines indicate precise design is possible; thin solid lines indicate precision can

be achieved in some cases; and dashed lines indicate precision is dif�cult (and may not be possible) to achieve through

current modeling approaches. Generating point sets through scanning requires real physical objects, which is often

not possible in designing new shapes. The approach of creating curves and constructing the surfaces (by sweep, loft,

blend, etc.) from these curves is the current well-known approach to achieve precise modeling. As discussed above,

it is done using control point manipulation and it lacks the required �uency and direct approach. So far, direct 3D

manipulation provides only approximate geometries and manipulations, despite its �uent and direct approach. Thus

there is always a trade-off between precision, �uency, and rapidity.

Figure 2.2 shows the layout of designing curves and surfacesin GuTS, where it allows creation and manipulation

of curves and surfaces directly with precision. Solid thicklines denote precision is maintained during these processes.

2.2 User Interaction Approaches

As computational power increased, the complexity of geometric modeling and the need for an effective user in-

terface also increased. Hence, researchers started to lookbeyond once suf�cient I/O devices, such as the keyboard,

mouse and monitor that only provide 1-Dimensional (1D) and 2D interaction, to a new level of user interaction.

16

Figure 2.2 Modeling in GuTS

2.2.1 Freeform Modeling Using 6 DOF Input Devices

Since most geometric modeling is in a 3D environment and at least 6 DOF need to be controlled, some research

focused on using 6 DOF 3D input devices (such as Polhemus [8],Ascension 3D trackers [2], Logitech 3D mouse

[4], Space Ball) to directly interact in 3D. Some of these interfaces allow the user to de�ne geometries directly in 3D

using 6 DOF tracking input devices. Because 6 DOF input devices work considerably differently than a conventional

2D mouse and keyboard setup, they give researchers opportunities to think in different ways for modeling freeform

geometries. The 3-Draw system of Sachs et al. [85] created 3Dcurves using a 6 DOF tracking device and constructed

3D surfaces by �tting a surface through the linked curves. Stork et al. [92] extended this approach to create and edit

freeform NURBS surfaces directly using 6 DOF input devices.Some systems, such as “HoloSketch” of Deering [41],

Schkolne et al's [86] `surface drawing' and Bill et al's [28]research, allowed the user to sculpt the polygonal objects

directly using 3D trackers, hand motions and virtual tools.Korida et al. [66, 78, 77] described the use of gesture

input and 6 DOF input to simulate pottery modeling as in real-world ceramic art. Balakrishnan et al. [18] presented a

computerized simulation of the tape drawing process typically used in the automotive industry. Badler et al. [17] used

an absolute 3D device to manipulate and position 3D objects for kinematic structures. Due to the ability and nature of

these 3D input devices, sculpting and modeling directly in 3D became feasible, direct and easier. Because of imprecise

human input and the imprecise nature of these input devices,only abstract and approximate models are constructed

using these approaches. Hence, such systems lack the required precision that is demonstrated in the GuTS approach.

2.2.2 Customized Special Purpose Higher DOF Input Devices

Rekimoto et al. [82] used a new type of input device called the“Tool Stone”, a cordless multiple DOF input device

that enabled the issue of multiple commands by sensing physical manipulation of the device itself. Hinckley et al.

[55] and Pierce et al. [81] used a small doll of the actual manipulation shape, attached to 6 DOF input devices, to

interact naturally in a 3D environment directly. While focused on new input interaction mechanisms for issuing input

17

commands, manipulating objects and viewpoint controls directly in 3D, they do not provide any solution for precisely

manipulating objects in the 3D environment.

Balakrishnan et al. [19] used a novel bend and twist-sensitive input strip called ShapeTape
TM

attached to a 6 DOF

input tracker to create and manipulate 3D shapes directly in3D. Using both hands, the shape tape is manipulated in

the real-world and by using this tape's shape and twists, freeform curves and surfaces are created. This approach does

provide a direct and easy approach to create freeform geometries, but as in other higher DOF input devices, this too

lacks precise input. It is this lack of precision that the GuTS approach addresses.

2.2.3 Experimental Evaluations of Input Devices

Several researchers, including Hinckley et al. [54, 52, 53], and Zhai et al. [102, 101, 103, 104, 105], presented a

detailed study, experimental analysis, user performance and the importance of 6 DOF input devices in 3D interaction.

The overview of multiple input devices lets us analyze the plethora of options for input devices. The studies and

evaluation of multiple input devices and interaction mechanisms help us eliminate many input devices, based on their

nature and unsuitability for precise manipulation in 3D. Some observations from these studies, such as manipulation

of input devices that are controlled by �ngers are more precise than other input devices that are manipulated through

the palms or arms, aid us in choosing input devices accordingly since precision is an important factor in our research.

2.2.4 Two-Handed Approach

To further improve user performance and enable �uent interaction, Cutler et al. [40], Leganchuk et al. [69], Buxton

et al. [36], and Balakrishnan et al. [19], used two-handed direct manipulation in a 3D environment. In these cases, the

dominant hand provides precise detailed input while the non-dominant hand is used for coarse input. Their research

highlights interesting and important aspects of the two-handed approach, such as the ability to complete a dif�cult

interaction through coordinated and asymmetric bimanual inputs. From the experiment results they observed that

bimanual techniques are signi�cantly faster than uni-manual manipulation and bimanual interaction may be driven

by factors other than simple time-motion performance advantages. Llamas et al. [70] discussed a system called

“Twister” that allows two-handed editing of 3D shapes by applying orientation changes and rotational constraints at

each displaced point. Grossman et al. [49] used two-handed and multi-�nger approaches for gestural interaction with

3D volumetric displays. Yan [50] discussed the simultaneous use of two-handed input and multiple �ngers through

touch-sensitive screens based on theFrustrated Total Internal Re�ection(FTIR) phenomenon. In the GuTS system,

the two-handed approach makes use of the bene�ts observed inthis research. Also, we extend the user interaction

further by adding other input/output modes (multimodal interaction) that allow the GuTS system to be used �uently,

directly and rapidly.

18

2.2.5 Multiple Input Modalities Approach

Bourguet et al. [33], Arangarasan et al. [12], Grasso et al. [48], Billinghurst et al. [29], and Houde [57] all used

speech interface and other modes of input jointly so as to manipulate graphical objects directly and rapidly. Arsenault

et al. [14] used force feedback mechanisms by using a force feedback device (such as the Phantom device [7]) to

provide additional feedback to the user and to interact effectively in the complex 3D environment. All of this research

emphasized the use of multiple modes and established the bene�ts of multimodal interaction. The research performed

by Cohen et al. [39], Bowman et al. [34], Blattner et al. [30] and Brooks [35] created an understanding of the broad

range of performance and characteristics of interaction mechanisms. Their research also displays the importance and

effect of multimodal user computer interaction in 2D and 3D environments.

The above mentioned research not only applied a set of modalities for approximate 3D modeling and manipulation,

but also for other different applications emphasizing the signi�cance of multimodal interaction. However, none of them

focused on the use of multiple modes simultaneously to enable directness and rapidity in precise freeform modeling.

We apply multimodal interactions such as two-handed input,a 6 DOF input device, direct hand-eye coordination

through a pen-based data tablet display, voice input and synthesized speech output for effective user interface in the

GuTS system.

19

Chapter 3

GuTS - User's Perspective

In this chapter we present the user's perspective of the GuTSapproach. The steps involved in the GuTS approach

will be stated. The various operations will be discussed, including their contributions to precision, �uency, and rapidity.

Figure 3.1 shows the sequence of operations and several stages of geometries in the GuTS modeling approach.

New pieces of geometries are created mainly by tracing alongthe guide geometries. Then, further tracing along

the guide geometries extended these existing old geometries to form complex shapes. In addition, as an alternative

approach, existing multiple pieces of geometries are directly stitched together to form complex shapes. By performing

these operations multiple times, the desired �nal geometryis attained.

In GuTS, guide geometries are the geometries that are used for tracing and generating new geometries. The guide

geometries and other regular geometries in the modeling session use the same geometric representation. The difference

is guide geometries allow the user to trace over them and theyalso trigger certain snapping operations. Any regular

geometry can be converted to a guide geometry and vice-versa. To differentiate between these two, in this thesis,

we refer to guide geometries as `guide geometries' or `guideshapes' and regular (non-guide) geometries as simply

`geometries'. In curve modeling guide geometries are also referred to as `guide curves' and in surface modeling as

`guide surfaces'.

The GuTS approach itself is independent of the underlying geometric representation. In our implemented GuTS

system, we used interpolation subdivision curve and 3rd degree Bezier curve representations for curves. The user

can select either one of these representations in a modelingsession. Surfaces are represented by a tessellated mesh

representation.

In short, the main steps are as follows:

1. Generation of guide geometries

2. Trace pieces of geometries from guide geometries

3. Position the guide geometries and other geometries precisely (absolute global position, relative position to other

existing geometry - curve modeling only)

4. Automatically stitch the pieces of geometries together

20

Figure 3.1 Sequence of operations and stages of geometries in GuTS

Both curve and surface modeling use the same basic paradigm –trace and stitch – for creating complex geometries.

In the following sections we discuss each of these topics in detail that are speci�c to curve and surface modeling

respectively.

3.1 Curve Modeling

3.1.1 Generation of Guide Curves

In GuTS, new curves are created by tracing over the guide curves. Guide curves can be of any shape. Any existing

curve in the modeling session can also be a guide curve and used for tracing. This �exibility allows GuTS to easily

adapt to create a wide range of complex shapes. In our currentimplementation of the GuTS system, the guide curves

are generated mainly through scanning and converting existing geometries.

3.1.1.1 Scanning

The main goal in selecting guide curves is to choose a limitedset of basic general-purpose curves that represent

a wide variety of curves. One such example is a set of French curves and ship curves (as shown in Fig. 3.2) that

covers a wide range of curves for speci�c application. Thesecurves can be used as a template to produce several

smooth curves (as performed in the conventional drafting process). In our GuTS system, French curves are scanned

and the outlines are stored as a set of points. Since interpolation subdivision schemes (discussed in Chapter 4) are

one of our geometric representations to present curves, limited sets of initial points are suf�cient to easily attain the

required smoothness of the curves. If required, generationof French curves digitally can be adopted as suggested in

[91]. Currently, this scanning and storing of the set of points from the guide templates is performed manually to show

that the guide geometries can be scanned and used effectively in the GuTS approach. This process can be automated

with little effort in order to scan a large number of guide geometries. Figure 3.3 shows the actual process involved in

scanning guide shapes. Figure 3.3(a) shows the scanned image of a real French curve. Figure 3.3(b) shows a small

21

Figure 3.2 Generic guide templates - French curves and Ship curves

set of scanned points on the boundary of the French curve. Figure 3.3(c) shows the scanned Bezier curve (and its

corresponding Bezier control points) on the boundary of theFrench curve. Figure 3.3(d) shows additional points are

included for interpolation subdivision representation. Figure 3.3(e) shows the resulting French curve, and the �nal

French guide-curve is shown in Fig. 3.3(f).

3.1.1.2 Converting existing geometries

Another way of populating the guide geometries is to convertthe existing geometries to guide shapes. Since

regular geometries and guide geometries use the same geometric representation, converting the geometries back and

forth is straight forward. Using this approach, multiple geometries can be combined together to easily form complex

guide shapes. Fig. 3.4 shows some of the sample guide curves that are used in the current GuTS system.

3.1.2 Drawing and Tracing Curves

The primary mechanism for the user to create curves in the GuTS system is to draw them, using a pen-based input

device. Just as with paper and pencil drafting, more preciseshapes are created by using guide shapes and tools that

help position the pencil precisely. As haptic feedback provides precise guiding in the real world, precision is achieved

using gravity �elds [93] that attract the cursor towards theguide shape when the pen is near the guide shape. Then

the user traces the desired portion of the guide shape, as shown in Fig. 3.5. Details about snapping mechanisms are

discussed in the following section.

Guide curves can be of any shape and type (such as line, arcs, or freeform curves). The traced geometries inherit

the properties of the guide shape and are presented in the same geometric representation. The complexity of the guide

curve does not affect the interaction, performance or the approach of tracing. For example, the cursor also snaps to

existing curves, making it easy to connect to them. Guide shapes are transformed as needed by the user so that curves

can be placed as needed. Our preferred mechanism for positioning guides is to use a 3D mouse in the non-dominant

22

(a) (b)

(c) (d)

(e) (f)

Figure 3.3 Scanning objects to create guide shapes

Figure 3.4 Sample guide shapes

23

Figure 3.5 Tracing from guide curve

hand, allowing the user to position, rotate and scale the guide curve while tracing it with the dominant hand using a

pen tablet. This directly mimics the drafting process.

3.1.3 Precise Positioning and Stitching

In the GuTS approach, snapping is used extensively. Severalsnapping mechanisms provide the required precision

to perform several tasks. The snapping mechanisms in the existing modeling systems are primarily the mouse cursor

snapping to geometries. In the GuTS approach, while cursor snapping is used, several other snapping mechanisms

are also introduced. In the GuTS approach, the whole geometry becomes a snapping object and each guide geometry

snaps to other regular geometries. This whole geometry snapping allows different types of snapping in the GuTS

approach. They are: one-point snap (pivotal snap), two-point snap, �xed snap, and slide snap. Each of these snap

mechanisms are discussed below in detail.

The primary tasks in snapping are: positioning the cursor location for tracing; positioning the guide curves and

regular curves; and positioning the curves absolutely or relatively to other curves. As seen in the previous section,

snapping the cursor to the guide shapes provides precision during the tracing operation.

To create precise relationships between segments, one mustposition the guides precisely. To assist with this, GuTS

provides a set of snapping operations for positioning the guide curves. Because the end points of existing curves exert

gravity, it is easy to extend a previously drawn curve piece without introducing a gap, as shown in Fig. 3.6. These

snapping mechanisms are variants of gravity �elds. When a guide curve is close to a relationship with existing curves,

it snaps to a precise position that creates the desired relationship. Once snapped, this relationship is maintained as the

user further manipulates the guide, until the guide is pulled away from the precise relationship. For example, after the

user draws a segment of a curve, the user can position the guide curve at a different place to extend this curve. If a

guide is moved close to an end of an existing segment, it snapsto connect to this point.

Figure 3.7 shows different snap mechanisms that are introduced in the GuTS approach. The snapping of a guide

to a position is the basis for several types of snapping operations. The basic form, which we call a one-point snap,

provides the starting point for more complex snapping operations. Once the guide is snapped using a one-point

24

Figure 3.6 Tracing further

Figure 3.7 Gravity-based point, slide and �xed snaps

25

Figure 3.8 Grid based snapping

snapping operation, the guide can be further manipulated inways that preserve the point connection. While one-point

snapped, the guide can be rotated around the snap point (called a pivotal snap) or translated such that the connection

is maintained by sliding along the guide curve direction. The point connection established by the one-point snap is

maintained. Mechanisms for establishing precise orientation relationships add to the one-point snap. For example, as

the user rotates the guide, if the orientation of the guide brings it close to either being tangent or perpendicular to the

existing segment, the guide snaps to establish this relationship precisely.

The two-point snap also sets the orientation of a guide afterit is snapped to an end of the existing geometry. As the

user rotates the guide curve around the snapped point, if theguide comes close to another snap target point, the guide

curve is rotated so that the second point snaps to the target point. This makes it extremely easy to position guides

to connect two curves or two different target points. Different snapping mechanisms - pivotal snap, slide snap, and

two-point snap - are novel snapping mechanisms and are secondary contributions of this research.

Traditional grid-based snapping as shown in Fig. 3.8, though not novel, is also used in the GuTS system. Grid-

based snaps are used in the GuTS system to achieve absolute coordinate precision. With all of our snapping mecha-

nisms, the stickiness of the snap is important. Snaps must besticky enough to make it easy for the user to establish the

relationship without positioning the guide precisely. Thesnaps must also be sticky enough to maintain these relation-

ships, without being so sticky that the user cannot pull the guide away from the curve. For example, after the initial

one-point snap, small motions tangent to the guide are interpreted as sliding the curve but still preserving the snap,

while larger motions normal to the curve pull it away from itsinitial snap. The issues of engaging and disengaging

snaps become even more important in cluttered drawings where an increased number of potential snap sites may cause

an increased number of unwanted snaps. This clutter problemis an issue in any snapping interface and has been ad-

dressed in previous systems by locking mechanisms. Severalother concepts, such as selective geometry manipulation

26

Figure 3.9 Digitized french curve in the GuTS system, as usertracing a guitar sketch

and layered geometries, can also be used to avoid the clutterproblem. More details about this are discussed in Chapter

7.

Figure 3.9 shows the actual snapshot of the tracing operation in progress. The crossed box at the point that

connects the guide curve and the regular curve represents the tangent snap established between these geometries.

As a summary, some of the earlier research [93, 25, 24, 23] described simple snapping mechanisms such as gravity

�eld and conditional snaps (tangential, perpendicular, etc.). In this research, we introduced new additional snapping

mechanisms such as pivot snap, two-point snap and slide snapthat provide the required precision during several

geometric operations.

3.1.4 Automatic Continuity Detection

When multiple curves are joined together it is essential to provide the desired continuity between the curves. The

snapping mechanisms provide an indication of the types of continuity that the user desires. In cases where snapping is

not used, automatic continuity mechanisms are employed to establish relationships between segments.

The automatic continuity mechanism automatically detectsthe suitable continuity condition based on the angular

difference between the two curves and their curve types. Forexample, with a subdivision curves representation, when a

C1 continuity curve is stitched to anotherC0 continuity curve, it establishes theC0 condition at the stitching point and

the resultant curve also will haveC0 continuity. In another example, when aC1 curve is stitched to anotherC1 curve

and the angular difference between these two curves is belowa certain threshold level, it producesC1 continuity at the

stitch point as well as all along the resultant curve. On the other hand, when twoC1 curves are stitched together and

27

Figure 3.10 Auto continuity detection

Figure 3.11 Smooth operation

the angular differences are above the threshold level, thenit producesC0 continuity at the stitch point but maintains

C1 continuity everywhere else on the curve. Figure 3.10 shows the process of automatic continuity detection when

two curves are connected together by different scenarios. This insures that the desired continuity is maintained at the

stitched region as other drawing operators, such as the re�nement operators (discussed in a later part of this chapter)

are applied. In a Bezier curve representation, at the connection points, depending upon the settings of the geometries,

eitherC0 or G1 or C1 continuity is created.

3.1.5 Other Geometric Features and Operations

The geometric operations and features described in the previous sections provide a way to create curves rapidly and

precisely. For completeness of the GuTS system, we used several geometric features and operations. In this section

we brie�y discuss those geometric operations.

3.1.5.1 Smoothing

Freehand drawing is an easy solution when a user wants to �uently create some random freeform curve that cannot

be easily and uniquely de�ned by a set of guide shapes. Drawing smooth, freehand curves without a guide is dif�cult:

curves created by freehand drawing always contain wiggles due to imprecise human input and sampling issues. A

smoothing tool is essential to make freehand curve sketching useful. Our smoothing tool applies to the curve locally

28

by removing wiggles at any speci�ed curve region (refer Fig.3.11). In our current implementation, a weighted n-

point smoothing algorithm is used for smoothing the curve. In this approach one vertex is adjusted at a time without

changing element topology but improving element quality. In the interactive mode, as the user moves the cursor along

the curve, the closest point is adjusted. Thus the �uency andsmoothness of the freehand drawing are maintained.

3.1.5.2 Gestures

Though the tracing mechanism can be used to create basic quadratic shapes (such as circles, arcs, ellipses), it can

be inconvenient as it requires the user to select the guide shape and then trace the entire shape. To facilitate the creation

of commonly needed shapes, we have introduced a simple gesture-recognition feature to identify basic shapes such as

a line, circle, ellipse, and arc, directly from freehand scribbled strokes. Our gesture-recognition algorithm subdivides

a scribbled input into a set of regions and considers the distribution of points in each cell. Based on the distribution

of the points, the �nal basic primitive is derived. The details about how the primitives are derived from the freeform

sketch are provided in Chapter 4. Figure 3.12 shows simple scribbled drawings for a circle and a line, where the region

is divided into basic 3x3 cells. The same logic can be extended to subdivide the cells further for more ef�cient and

precise recognition of shapes. Though this method cannot beused to recognize any generic shapes, basic shapes such

as a circle, line (horizontal, vertical, inclined), ellipse, and arc are well recognized. This feature is especially useful

when creating basic shapes rapidly. In the GuTS system, the user selects the scribble mode to activate the gesture

recognition feature. Once the gesture recognition featureis turned `on', the user's scribbled input is used to recognize

the basic shapes rapidly. This `on/off' feature helps to differentiate between regular tracing and gesture scribble input.

The basic shapes created from the scribbled input are like any other geometries - those can be used as guide shapes

and use them for further tracing and stitching operations.

3.1.5.3 Level of detail

Often, it is more convenient and computationally inexpensive to work with curves at low levels of detail. Such

multi-resolution work is well supported within the GuTS system when subdivision representation is used. For one,

the guide shapes can be provided at varying levels of resolution, allowing speci�cation at any point. With subdivision

schemes, different levels of detail are easily achieved. This feature enables the user to create a complex curve with

different levels of detail at different portions of a curve.For example, when a guide shape at different levels of detailis

used to trace a different portion of the curve, the resultingcurve will contain these varying levels of detail. Though the

level of detail can also be controlled automatically based on the curve properties, this feature provides the user with

an additional control to modify the curve as desired.

Figure 3.13(a) shows a coarse curve that contains fewer vertices. As the curve is re�ned to the next level, as

in Fig. 3.13(b), it becomes smoother and re�ning further produces the smooth curve shown in Fig. 3.13(c). After

repeating the re�ning process several times, the changes between two different levels become negligible and the �nal

29

Figure 3.12 Basic gesture recognition

30

Figure 3.13 Course / re�ne operation

curve is called the limit curve, as shown in Fig. 3.13(c). Thegeometric operations and manipulations are easily

performed at the coarse level because fewer vertices are involved. Once the operations are completed it can be re�ned

to the required smoothness.

3.1.5.4 Cut / trim

In most cases the user can create a complex shape by only adding pieces of curves together. Sometimes just by

removing a portion of a curve helps to get the desired shape easily and potentially avoids several stitching processes.

In the GuTS system, two types of cuts are provided: `point cuts' and `region cuts'. `Point cuts' are done to split the

curve and `region cuts' are performed to split the enclosed region of a curve into pieces. Both cuts are illustrated in

Fig. 3.14. When performing the region cut, guide shapes can also be used to precisely trace the path of the cut in the

same way a curve is traced during creation.

3.1.5.5 Vertex-level operations

Inspired by the availability of the point-set given our subdivision implementation, there is a whole new range of

operations that can be performed on the curves. We allow the user to perform operations on the individual points that

make the curve. One example is vertex-level editing. Vertex-level editing allows some interesting operations such

as drag and twist (vertices), erase (a vertex or edge), and change continuity of a vertex (to create a crease). These

features are especially interesting since this allows control of the curve locally. Figure 3.15 shows a vertex-level twist

and drag operation on a curve. User selects a portion of the curve and then the selected portion of the curve is twisted

and dragged to modify the shape of the curve locally. Figure 3.16 shows another example of vertex level operation -

vertex and edge erase. This feature allows to erase part of the curve locally.

3.1.5.6 Intersection

In the GuTS approach, one of the most commonly used operations is �nding the intersection of curves. As the

user moves the geometries, the intersecting points of geometries are calculated and displayed to user in real-time.

To achieve interactive system performance, intersectionsare computed at two stages as shown in Fig. 3.17. Initially

the approximate intersections are computed and displayed to the user. Since multiple curves are used in the GuTS

31

Figure 3.14 Cut operation (point cut and region cut)

Figure 3.15 Vertex level twist and drag

Figure 3.16 Erase (vertex and edge erase)

32

Figure 3.17 Multi-level intersection

system, these approximate intersection points are dynamically and automatically computed, and displayed to the user.

When the user refers (or tries to use) any intersection point for any further operation, it computes the exact intersection

by recursively re�ning up to the desired accuracy. This two-stage intersection process reduces the computation time

considerably and computes all the intersection points, even with complex shapes, during real-time interactions. This

two-stage intersection process is performed transparently to the user without any user intervention. The user will not

notice this two-stage operation during the modeling session. The calculation and display of intersection points in the

GuTS approach allows the user to trace between multiple geometries without interruption. This feature also provides

a WYSIWYG (What You See Is What You Get) interface for tracing overmultiple geometries.

3.1.6 Dimensional Tags

Dimensional tags are a set of origins (oriented points) thatinteractively display the dimensions between any user-

preferred position and the current location of the guide geometries (and/or the current input position). This feature

allows the user to interactively identify the dimensions with respect to several locations simultaneously. In Fig. 3.18,

two dimensional tags - one at the origin of the drawing space and the second at an intersection point - are placed. As

the cursor moves, the dimensions are displayed with reference to these two dimensional tags. These tags can be placed

at any desired position. This feature allows simultaneous viewing of multiple dimensions measured from different

points. Other than Cartesian coordinate dimensions, as shown in Fig. 3.18, other types of user-customized dimensions

(such as angles and radial distances) can also be displayed.

For the completion of basic geometric and manipulation operations, several other generic operations such as copy-

ing, deleting, scaling, and mirroring are also performed inthe same way as in any other modeling program.

33

Figure 3.18 Dimensional tags

3.1.7 Example - Guitar Model

Figure 3.19 shows the process in creating a guitar model in the GuTS system. Figure 3.19(a) shows tracing the body

of a guitar using a (French curve) guide geometry. Figure 3.19(b) shows tracing further the guitar body. Figure 3.19(c)

shows after the right half mirrored to form the left half of the body, and then the top left part of the guitar body is being

modi�ed - part of the geometry is erased and new portion of thegeometry is being traced. Figure 3.19(d) shows the

completed guitar model. Several features that are discussed above are used to complete this guitar sketch. In several

cases once the drawing of curves is completed, they can be used to create 3D geometries using conventional operations

such as extrusion, revolution, and sweep. Thus the curves created in the GuTS system are effectively used to create

freeform surface geometries.

3.2 Surface Modeling

In the GuTS approach, surfaces are modeled using similar approaches as described in the curve modeling section.

Several of the features, such as guided trace, stitch, intersect, and smooth, performed in curve modeling are extended

to surface modeling. In the GuTS system, surfaces are represented by tessellated mesh.

3.2.1 Generation of Guide Surfaces

Unlike French curves or ship curves that cover a wide range ofcurves, there are no generic surfaces that cover

a wide variety of surfaces. So, in surface modeling, the guide surfaces are created primarily in three different ways.

First, basic primitives such as block, sphere, cone, torus,etc. are used. Second, surfaces are used that are created from

curves through geometric operations such as extrusion, revolution, sweep, etc. Third, surfaces that are imported as

triangulated mesh models created in other modeling systemsare used.

34

(a) (b) (c) (d)

Figure 3.19 Creating a guitar model

35

Figure 3.20 Point trace over guide surface

3.2.2 Tracing Surfaces

Surface patches are created in GuTS mainly by tracing over guide surfaces. There are two types of tracing: point

tracing and thick-brush tracing.

3.2.2.1 Point tracing

Point tracing is performed as shown in Fig. 3.20. Using the pen tablet, a boundary is traced over the guide surface.

As it is traced, a curve is drawn over the surface and which then selects a region of the surface geometry. The desired

surface patch of a region on the guide surface is produced. This selection is primarily done in two steps: using a point

pen to draw a curve directly over the guide surface and then creating the inner surface patch (bounded region) once

the curve is closed.

3.2.2.2 Thick-brush tracing

In the second approach, a thick brush is used to paint over theguide shape to select regions of the guide surface,

as shown in Fig. 3.21. Both these approaches produce the sametype of resulting surface patch, but based on the shape

of surface to be created, each approach serves its own purpose.

Though in both the above cases the guide surface is used for guiding, the boundary of the patch is not precise.

The precision of the boundary as well as the inner surface region is achieved using the following two approaches. In

addition to guide surfaces, guide curves are also used to achieve precise boundary. As shown in Fig. 3.22, the guide

curve is placed on a plane (usually perpendicular to the viewdirection) and projected onto the guide surface. Then the

user moves the guide curve as discussed in the previous section and traces along the guide curve. The resulting traced

curve is projected onto the guide surface. A region of the guide surface is then traced which creates a surface patch

with precise boundary.

36

Figure 3.21 Thick-brush trace over guide surface

Figure 3.22 Tracing over guide surface using guide curves

37

(a) (b)

(c) (d) (e)

Figure 3.23 Creating a leaf model through point tracing

38

Figure 3.24 Thick-brush tracing

Figure 3.23 shows the actual snapshots of the step-by-step sequence of the point tracing operation in the GuTS

system. The �rst picture shows an extruded surface and over that a traced curve is drawn in the shape of a leaf. The

second picture shows the same in the shaded view. The third picture shows after the curve is inserted into the surface.

The curve insertion algorithm is detailed in Chapter 4. Thisoperation divides the surface along the traced boundary

and the inner portion of the curve is highlighted. Then by trimming, the outside unnecessary surface is removed. The

�nal desired leaf surface is shown in the fourth �gure and the�fth �gure shows the same in wire frame rendering.

The �rst picture in Fig. 3.24 shows the actual snapshots of thick-brush tracing over a simple torus object. The

second picture shows after the traced portion of the surfaceis trimmed and the unwanted surface is removed. This

example shows that a complex surface geometry can be createdeasily through a simple tracing operation using the

GuTS approach. This is unlike other modeling programs wherecomplex and time consuming operations are needed

to create the same geometry.

Figure 3.25 shows the ability to trace using multiple guide shapes simultaneously and produces a single complex

surface patch. As these guide surfaces are moved, the intersection between them is also computed in real-time. This

is another example highlighting how simple tracing over multiple guide shapes creates a complex freeform surface in

the GuTS approach. In other modeling operations it would take several time-consuming complex operations to create

the same geometry. In addition to tracing the surface patches from guide shapes, basic operations, such as extrude,

revolve, sweep, and loft operations, are also provided in the GuTS system.

3.2.3 Stitching Surfaces

Designing a complex freeform surface in a single step using asingle patch is dif�cult and tedious. Often, merging

several patches of surfaces together produces the requiredcomplex shapes easily. Hence, once the surface patches are

created, as mentioned above, they are stitched together to form complex surfaces. It becomes important to stitch these

surfaces together in a meaningful way to get the desired shape and properties.

39

Figure 3.25 Tracing over multiple guide surfaces

Figure 3.26 Surface stitch

40

It is very rare (or impossible) to have the boundaries of any two random freeform surfaces match exactly so that

the surfaces can be stitched together directly. Therefore,the surfaces need to be processed at the boundary before

stitching them together. AssumingS1 andS2 are two surfaces that need to be stitched, the following cases can happen.

1. S1-S2: boundary matches exactly

2. S1-S2: boundary does not match, then following cases will happen

2.1 Overlap (modify - add or remove - vertices within the surface region)

2.2 Extend (modify - add or remove - vertices outside the surface region)

These three cases, exact match, extend, and overlap, are shown in Fig. 3.26 (a, b, and c) respectively. In case 1,

since both the boundaries match exactly it is straight forward and the surface patches are easily connected to form a

single surface mesh. In case 2.1, the surface patches overlap. In this case, the intersection of these surface patches is

computed and an exact boundary between the two surfaces along the intersection curve is created. This produces case

1 and these surfaces are easily stitched.

In case 2.2, when two surfaces do not overlap, a surface has tobe created between the two surfaces based on the

boundary conditions to connect them. In this case, no one solution exists and there is no clear de�nition of precise

geometry for the extended surface between the two surface boundaries. At this stage, in the GuTS approach, we

maintain shape precision by creating surfaces that are onlya subset of the input geometries (i.e. subset of guide

geometries). We have not implemented case 2 scenarios (modifying within the surface and extending the surfaces) in

our current GuTS system, but this can be extended in the future as an add-on module with additional research.

3.2.4 Other Surface Operations

When designing surfaces it is not possible to get the desired shape just by creation itself. Often several other

geometric operations are needed to re�ne the surface in order to achieve the desired shape and property.

3.2.4.1 Snapping at the boundary

To assist precise tracing over the boundaries and multiple surfaces when switching between surfaces, a snapping

force is introduced along the boundary and intersecting curves (as shown in the Fig. 3.27). When the tracing point is

within the threshold distance, it snaps to that boundary of the surface or to the intersecting curve forming a precise

tracing operation.

3.2.4.2 Cutting and trimming operation

One important operation is cutting and trimming. As shown inFig. 3.28, cutting can be done in several ways. It

is similar to the creation of curves in the curve modeling approach. In creation, a boundary or a region is drawn on

41

Figure 3.27 Snap region along the boundaries

a guide shape to create a new patch. In cutting, the boundary and the region are drawn on a surface, and the selected

region is removed from the original geometry. All of the tracing mechanisms discussed in the surface tracing section

can be used for trimming the surfaces.

3.2.4.3 Bump and dip features

As tracing is performed over a surface geometry, the traced portion can be raised to create a bump feature or

lowered to create a dip feature. The raising and lowering canbe performed easily using the local normal of the

associated vertices. Also, when concave objects are raised, the need arises to check self-intersection and clear the

geometry accordingly to create non-self-intersecting surfaces.

3.2.4.4 Local smoothing of surfaces

This feature is used to smooth the mesh locally. In this approach one vertex is adjusted at a time without changing

the element topology but improving element quality. To makeit interactive and simpler to use, thick-brush smoothing

(similar to thick-brush tracing) is used to smooth the surfaces. When thick brush is used, the vertices within the brush

radius are adjusted. Several techniques, such as Laplacianaveraging, Optimized-based smoothing and Combined

approaches, can be used. In the current version of the GuTS system, local smoothing is not implemented.

42

Figure 3.28 Cutting surface

43

Chapter 4

GuTS - Implementation and Technical Details

In this chapter we describe the technical details, geometric representation, high-level structure, and algorithms that

are used in the GuTS modeling system. These detailed technical information will help the readers understand the

underlying theoretical details and implementation of the GuTS system.

In GuTS, the underlying geometric representation and data structure is hidden from the user and provides direct

manipulation of the geometries. The GuTS approach is not limited to any particular geometric representation and it can

be implemented using different curve and surface representations. In our current implementation of the GuTS system,

we used interpolation subdivision schemes and Bezier representations for curves and triangulated mesh structure to

represent the surface geometries. We choose interpolationsubdivision schemes for curve modeling for the following

reasons: this scheme allows editing vertices of the curves directly; resulting limit curve interpolates the initial control

points; allows multiple level-of-detail through interpolation subdivision; provides WYSIWYG approach; and it is

easy to implement like a polyline. We chose the second representation - Bezier curves - for the following reasons:

to demonstrate that the GuTS approach can be implemented using different geometric representations; Bezier curve

representation is widely used in many computer graphics andCAD modeling systems enabling compatibility with

those systems; and Bezier representation produces smoother curves compared to the interpolation subdivision scheme.

Like the curve modeling, the surface modeling of the GuTS approach can also be implemented using different surface

representations. In our current implementation of the GuTSsystem, we chose the mesh representation for the following

reasons: multiple curve representations can create mesh representation directly; it is easy to represent and implement;

and it can be easily extended to incorporate subdivision surface schemes (discussed in Section 4.4.7). Figure 4.1 shows

a detailed list of the curve modeling functionalities and features in the GuTS system.

4.1 Curve Modeling - Subdivision Schemes

4.1.1 Interpolation vs. Approximation Subdivision Schemes

Subdivision schemes can be classi�ed into many groups. One way to classify the subdivision schemes are: ap-

proximation (such as Loop [71], Catmull-Clark [37], and Doo-Sabin [42]) and interpolation (such as Four-Point [44],

Butter�y [43], Modi�ed Butter�y [107, 106], and Kobbelt [65]). In approximation schemes, both new nodal positions

44

Figure 4.1 Curve modeling - Functionalities and features

45

- the newly created vertices and the vertices inherited fromthe coarser mesh - are computed. Consequently, the nodal

positions of the initial mesh are not samples of the �nal surface. On the other hand, in interpolation schemes the nodal

positions of the coarser mesh are �xed while only the nodal positions of new vertices are computed when going from a

coarser to a �ner mesh. Consequently, the nodal positions ofthe initial (or input) mesh, as well as any nodes produced

during subdivision, interpolate the limit surface. Since the input points are part of the �nal geometry, it resembles

editing the geometry directly rather than through control points.

In our current GuTS system, interpolation subdivision schemes are used. This scheme simpli�es implementation

of complex geometric manipulations such as tracing, cutting, stitching, and local editing with varying levels of details.

One of the drawback of interpolation subdivision schemes isthat they produce non-fair curves and surfaces. In the

GuTS approach, we suppress this issue to an extent through the input points that are traced from guide shapes with

desired smoothness and properties. Furthermore, several automated stitching and snapping mechanisms guarantee the

required continuity and smoothness properties.

4.1.2 Properties of Interpolation Subdivision Schemes

Even though we did not introduce any new properties of the interpolation subdivision schemes in this research,

a brief review of the properties of the interpolation subdivision schemes [44, 67] will help the readers understand

the characteristics of different features in this chapter.Some of the important properties of interpolation subdivision

schemes are:

� An interpolation subdivision algorithm is an insertion algorithm since all the points at stagek are carried over

to stagek + 1 and new points are inserted between the old ones.

� The resulting limit curve interpolates the initial controlpoints.

� It produces a straight line inRd, whenever the control points lie on such a line

� The derivatives of the limit curve can be computed directly,without detailed re�nement

� The resulting limit curves generated by 2-point, 4-point, and 6-point schemes areC0, C1,andC2 continuous

respectively.

Given the initial control points, based on the scheme, the intermediate points are inserted. In 4-point scheme four

points are used to compute the new points for the next level. Similarly 2-point and 6-point schemes use two and six

points respectively. Our implementation uses the subdivision scheme introduced by Dyn et al. [44] and Kuijt [67].

46

Figure 4.2 Masks for 2-point, 4-point, and 6-point interpolation schemes

47

4.1.3 Interpolation Subdivision Curve Representations

Figure 4.2 shows the commonly used masks for three types of interpolation schemes and its mathematical descrip-

tion is provided below. Given the initial control pointsf pi g
n +2
i = � 2; pi 2 Rd, intermediate points are added by several

schemes as follows.

4.1.3.1 2-Point interpolation scheme

2-point scheme is a simple linear subdivision scheme that inserts new points at levelk + 1 by simply averaging

two points from levelk.

pk+1
2i +1 =

�
1
2

�
�
pk

i + pk
i +1

�
; � 1 � i � 2k n [4.1]

If the curve is closed, then the starting point and ending point are joined together and subdivided at each level.

4.1.3.2 4-Point interpolation scheme

Given control pointsf pi g
n +2
i = � 2; pi 2 Rd, intermediate points are added by the following scheme.

pi + 1
2

=
�

1
2

+ w
�

(pi + pi +1) � w (pi � 1 + pi � 2) ; � 1 � i � n [4.2]

Let us denote the control points at thek-level set by
�

pk
i

	 2k n +2
i = � 2 : Then the subdivision scheme de�nes the control

points at levelk + 1 by

pk+1
2i = pk

i ; � 1 � i � 2k n + 1 ; [4.3]

pk+1
2i +1 =

�
1
2

+ w
�

�
pk

i + pk
i +1

�
� w

�
pk

i � 1 + pk
i +2

�
; � 1 � i � 2k n [4.4]

wherep0
i = pi ; � 2 � i � n + 2 .

The role ofw in the above scheme is a tension parameter. It has been observed [44] that when the values ofw are

0 < w < 1=4 the curve is continuous and when it is0 < w < 1=8, it has a continuous tangent vector. In 4-point

scheme,w = 1=16 is most commonly used because at this value this scheme reproduces polynomials of a degree less

than or equal to 3. The values ofw which are relevant for application to curve design are0 � w � 1=10. Beyond this

range, though the curve remains continuous, it tends to produce many loops and sharp bends.

The tangent at thei th point is provided by

p
0
(i) =

1
1 � 4w

�
1
2

(pi +1 � pi � 1) � w (pi +2 � pi � 2)
�

[4.5]

48

For an open curve, two additional points in the beginning andtwo additional points at the end of the curve are

needed, which affects the behavior of the curve near its end points. These extra points can be used to control the slope

of the curve at the end points. For a closed curve, the additional points are derived from the existing points as follows:

p� 2 = pn � 1; p� 1 = pn ; pn +1 = p0; pn +2 = p1.

4.1.3.3 6-Point interpolation scheme

In this scheme six points are used to subdivide the next levelof points. This scheme produces continuous curves

with continuous tangent and curvature.

pi +1 =2 =
�

9
16

+ 2 �
�

(pi + pi +1) �
�

1
16

� 3�
�

(pi � 1 + pi +2) + � (pi � 2 + pi +3) [4.6]

For � = 0 and w = 1=16, this scheme corresponds to 4-point interpolation scheme.When the value of� is

0 < � < 0:02, then it guarantees the continuity of the curvature of the curve. The detailed description, proof of

convergence and analysis of these schemes can be found from the research by Dyn et al. [44] and Kuijt [67].

4.2 Curve Modeling - Bezier Representation

The Bezier [22] form of the polynomial curve segment, named after Pierre Bezier, indirectly speci�es the endpoint

tangent vector by specifying intermediate points that are not on the curve. The Bezier curve interpolates the two end

control points and approximates the remaining intermediate points.

For givenn+1 control-point positions:pk = (xk ; yk ; zk), with k varying from0 to n. These coordinate points can

be blended to produce the following position vectorP(u), which describes the path of a Bezier polynomial function

betweenp0 andpn .

P(u) = � n
k=0 pk Bk;n (u); 0 � u � 1 [4.7]

The Bezier blending functionBk;n (u) are theBernstein polynomials:

Bk;n (u) = C(n; k)uk (1 � u)n � k [4.8]

where theC(n; k) are the binomial coef�cients:

C(n; k) =
n!

k!(n � k)!
[4.9]

P(u) = � n
k=0 pk Bk;n (u); 0 � u � 1 [4.10]

49

4.2.1 Properties of Bezier curves

We did not introduce any new properties of the Bezier curves in this research, a brief review of the properties of

the Bezier curve is presented here for completeness. Some ofthe important properties of Bezier curve representation

are:

� A Bezier curve is a polynomial. The degree of the polynomial is always one less than the number of control

points.

� The curve follows the shape of the control point polygon and is constrained within the convex hull formed by

the control points.

� The control points do not exert `local' control. Moving any control point affects all of the curve to some extent.

� The �rst and last points are the end points of the curve segment.

� The tangent vectors to the curve at the end points are coincident with the �rst and last edges of the control point

polygon.

� Moving the control points alters the magnitude and direction of the tangent vectors.

� The curve does not oscillate about any straight line more often than the control point polygon - known as the

variation diminishing property.

� The curve is transformed by applying any af�ne transformation to its control point, and the curve is invariant

under such a transformation.

4.2.2 3rd degree Bezier Curve Representation

In computer graphics (CG) applications, 3rd degree curves are commonly used. Quadratic curves are not �exible

enough and anything above 3rd degree gives rise to complications. While certain CAD applications require higher

order curves, they loose `local control' of the curves that is desirable for most CG applications. The best compromise

for CG applications, and the GuTS system, are 3rd degree curves which give reasonable design �exibility while

avoiding the increased calculations needed with higher-order polynomials. Considering this and to be compatible with

most CG systems, in our current implementation of the GuTS system we used 3rd degree Bezier curves.

3rd degree Bezier point function can be written in matrix form:

50

P(u) =
h

u3 u2 u 1
i

� M B �

2

6
6
6
6
6
6
4

p0

p1

p2

p3

3

7
7
7
7
7
7
5

[4.11]

where the `Bezier Matrix'M B is

M B =

2

6
6
6
6
6
6
4

� 1 3 � 3 1

3 � 6 3 0

� 3 3 0 0

1 0 0 0

3

7
7
7
7
7
7
5

[4.12]

At the end positions of the 3rd degree Bezier curve, the parametric �rst derivatives (slopes) are

P0(0) = 3(p1 � p0); P0(1) = 3(p3 � p2) [4.13]

The parametric second derivatives are

P00(0) = 6(p0 � 2p1 + p2); P00(1) = 6(p1 � 2p2 + p3) [4.14]

These expressions are used to construct piecewise curves with C1 or C2 continuity between sections.

Let us say two 3rd degree Bezier curves with control points(p0; p1; p2; p3) and (p4; p5; p6; p7) are connected

at the end pointsp3 and p4. Then, whenp3 = p4, C0 continuity is achieved.G1 continuity is achieved when

(p3 � p2) = k(p4 � p5), and whenk = 1 in the above equation,C1 continuity is achieved. Using the above set of

equations, automatic continuity between multiple Bezier curve segments is achieved in the GuTS system.

4.3 Algorithms for Curve Operations

In this section the algorithms and methodologies that are used to perform several curve based modeling operations

are discussed. Primarily, we discuss novel curve snapping mechanisms such as point snap, one-point snap/pivot snap,

slide snap, and two-point snap/�xed snap. Also we discuss the implementation details of �nding the intersection of

curves (for subdivision and Bezier representations), and amethod to create primitives using gesture inputs.

4.3.1 Curve Snap Mechanisms

Curve snapping is one of the key components in curve modelingin the GuTS approach. While snapping (i.e.

concept of gravity �elds) itself is not new, most of the modeling systems use snapping the cursor to geometries. In this

research we introduced novel snapping mechanisms called `whole geometry' snapping, where one geometry snaps to

another geometry. While there is a precedent of object snapping to a point, in this section we discuss different newly

introduced snapping mechanisms, such as, one-point snap (pivot-snap), two-point snap (�xed snap), and slide snap. In

addition to these novel snapping mechanisms, the GuTS system also allows traditional snapping mechanisms.

51

Figure 4.3 Gravity �elds

Figure 4.3 shows the different gravity �elds (i.e. snap regions - shown in grey color) of a curve in the GuTS system.

First, at the end of each curve the end points exert a gravity �eld of small radius(� R). Second, a small thickness

(� T) along the curve exerts a gravity �eld. With subdivision curves, the curve itself is stored as a series of point sets.

Then the gravity �eld is computed for each line segment in thecurve creating a thick gravity �eld all along the curve.

With Bezier curves, the shortest distance to the curve from any given point is calculated dynamically, with certain

thickness(� T) forming a thick gravity �eld along the curve. Third, a small angular portion(� �) from tangential and

normal vectors at end points of the curve exert gravity �elds. All these different types of gravity �elds form various

snapping mechanisms.

Figure 4.4 shows different types of snapping mechanisms that use the above gravity �elds. End point gravity �elds

are used to snap two curves at end points. Then one of the geometries can be rotated on the snapped point - creating

1-point snap, also called `pivot snap'. The end point gravity �eld of a curve can also snap to the thick gravity �eld

of another curve. Once a curve is snapped to an end point of another curve, the �rst curve can be moved (slid) such

that the �rst curve slides while touching the end point of thesecond curve. The gravity �eld along the curve helps

other curves to slide along this curve without detaching thecurves. This snapping mechanism is called `slide snap'.

Angular gravity �elds at the end points snap other curves andmaintain tangential or perpendicular conditions - called

perpendicular snap and tangent snap. Outside these angularsnap regions, a curve rotates by pivoting at the end point.

The other snapping mechanism is the `two-point snap'. In this snapping mechanism, �rst a curve is snapped to an end

point of another curve - forming pivot snap. Then one of the curves is rotated until the curve snaps to a second point.

This second point can be from any curve in the modeling session. Once two points are snapped, then the geometry is

�xed at that position - forming two-point snap (also called `�xed snap').

In addition, gravity �elds are introduced as grids in cartesian and/or polar coordinates (refer Fig. 3.8). These

gravity �elds position geometries precisely in a global coordinate system (i.e. absolute positioning). The cursor also

exerts a gravity �eld around its center point. This gravity �eld provides precise position of the cursor with respect to

52

Figure 4.4 Snapping Mechanisms: point, slide, and �xed snaps

53

curve geometries, helping trace geometries easily, precisely and rapidly. This snapping mechanism is called `cursor

snap'.

4.3.2 Intersection

In this section, we discuss the implementation details of �nding intersection points between curves (for both

Subdivision and Bezier representation). While the intersection algorithms itself are not novel, we present the imple-

mentation details to show how we used the subdivision and recursive properties of the geometries to �nd intersection

points rapidly, still achieving interactive frame-rate. We also discuss the limitation of our implemented intersection

algorithm for subdivision curves.

Intersection of the curves is performed in multiple stages and through local re�nement. With subdivision curves,

�rst the intersection between the two curves is performed atthe coarse level. If the intersection is identi�ed, then the

intersecting segments are identi�ed. Then three new vertices are computed (for 4-point scheme) and inserted at before,

middle, and after the intersecting segments. Next the intersection between these two local regions is computed and

again three new vertices are introduced. This process is continued until two successive intersection points lie withinan

acceptable tolerance limit. The �rst picture in Fig. 4.5 shows the intersection between two coarse curves. The second

picture shows the next cycle, where three new points (shown as solid circles) are inserted using the 4-point scheme. The

same approach is applied for 2-point and 6-point schemes. For 2-point scheme, only one new point is inserted locally

in every cycle. For the 6-point scheme �ve new points are inserted in every cycle. This approach �nds the intersection

point in constant computational complexity in every cycle,irrespective of the size or the number of vertices in the

curves. Due to the nature of the interpolation subdivision scheme, identifying the intersection point(s) between two

curves at any given level of detail is as same as identifying the intersection point(s) between two polylines. Due to the

same reason, if two curves do not intersect at any given levelof detail then the GuTS system will not try to �nd the

intersection point, even if those curves may intersect at a different level of detail. Similarly, even if two curves intersect

at a given level of detail, they may not intersect when the level of detail changes. In our current implementation of

the GuTS system, we address this issue as follows: if the curves do not intersect at a given level of detail then do not

�nd the intersection point; if the curves intersect then �nda more accurate intersecting point by recursively increasing

the level of detail locally. The recursive process stops when a preset precision is achieved or when the intersection

calculation is interrupted because the curves transition from intersecting to non-intersecting state.

With Bezier curves, the intersection can be calculated in various ways. Some of them include Bezier Clipping [89,

79], Recursive subdivision using De CastelJau's algorithm[45, 31], and higher order (9th degree) polynomial equation.

Root �nding to a higher order polynomial equation is not a robust method and hence skipped. Both Bezier clipping and

recursive subdivision methods are robust and easily implementable. In our current GuTS system, recursive subdivision

using De CastelJau's algorithm is implemented. This intersection algorithm is fast enough and computes intersection

points dynamically as the user moves the curves interactively in the GuTS system.

54

Figure 4.5 Multi-level intersection

4.3.3 Gesture-Based Primitive Creation

In this section, we discuss a method to create primitives from freehand input strokes. While the presented method

itself is not novel, we present the implementation details to show how basic primitives, such as lines, circles, ellipses,

and arcs, are created by recognizing the user's freehand strokes.

In the GuTS system, the user can turn `on' or `off' the gesturerecognition feature. By default, gesture recognition

feature is turned `off', since the primary mode of input in the GuTS approach is guided tracing. When gesture

recognition is `on', as the user draws a freeform drawing, the region of the input sketch is scanned. Based on the

distribution of the input strokes (the number of input points) within this region, the �nal primitive is recognized.

Figure 4.6 shows how the input stroke is compared with the pattern and, with additional conditions, the �nal shape is

recognized. Though the approach is simple, this approach identi�es the shapes for basic primitives. Our implemented

gesture recognition in the GuTS system is simple, based on the distribution of the input points in the 2D region, and is

limited to only create simple primitives rapidly and �uently. As shown in Fig. 4.6, the scanned region is subdivided into

a 3x3 matrix and the distribution of the number of points in each of these boxes is identi�ed. Assuming N is the number

of input points in the stroke, then `approximately' N/8 points are distributed in the outer boxes, and `approximately'

zero points in the middle box. Along with this pattern, the additional condition of the height/width ratio is used

to decide the �nal shape. Also, the major and minor radius of the ellipses is computed from the height and width

parameters accordingly. Similarly for recognizing the lines, the diagonal columns are distributed with `approximately'

one-third of the total number of input points and the remaining boxes with `approximately' zero points. Again the

ratio of height/width is used to recognize the different types of line segments. In this approach the recognition is

independent of both the direction of the input strokes, as well as the repetition of the input strokes. Similarly different

patterns and conditions are used to match the arcs. Once the input gestures are recognized and basic shapes are created,

those basic shapes are manipulated like any other geometry.This feature shows that the GuTS system creates simple

shapes through simple gesture input. A complex gesture recognition system can be found elsewhere [83, 84], that uses

a single gesture stroke to create simple shapes such as lines, texts, editing geometries, etc.

55

Figure 4.6 Gesture recognition algorithm

Figure 4.7 Surface modeling - Functionalities and features

56

Figure 4.8 Triangular face structure

4.4 Surface Modeling - Triangulated Mesh Structure

Figure 4.7 shows a detailed list of surface modeling functions and features in the GuTS system. In this research

we introduced new tracing mechanisms: zero-point tracing,thick-brush tracing, and tracing over multiple surfaces.

As part of the tracing and stitching operation, we developedan algorithm to insert curves and split surfaces.

In the GuTS system, currently we use a triangulated mesh structure to represent surface geometries. Figure 4.8

shows a face structure. Each face contains information about its three vertices and three pointers to the adjacent faces,

ordered counter-clockwise using a right-hand coordinate system. Adjacent faceF 0 is always adjacent to the vertices

V0 and V1, and similarly facesF 1 and F 2 are always adjacent to the vertex pairsV1 and V2, andV2 and V0

respectively. Maintaining this order consistently helps to implicitly represent the edgesE0, E1 andE2 of a face,

between the verticesV0, V1 andV2 respectively.

4.4.1 Algorithms for Surface Modeling Operations

In this section the algorithms and methodologies that are used to perform several surface modeling operations

are discussed. The important operations in surface modeling are zero-point tracing, and thick-brush tracing, tracing

over multiple surfaces, inserting a traced curve, intersection of surfaces, and stitching surfaces. The algorithms for

zero-point tracing, thick-brush tracing, and automated stitching operations are presented below.

4.4.2 Zero-Point Tracing

The steps involved in zero-point tracing are trace a curve over the surface, insert this curve into the surface and

divide the surface accordingly, and stitch (combine) the surface patches together. In zero-point tracing, as the user

draws on the screen, the 2D screen coordinates are convertedinto a 3D ray in the world coordinate system from the

57

3D point corresponding to the cursor position in the view direction. Then this ray is intersected with the guide surface

and the closest intersecting point to the view point is computed. As the user moves the cursor, multiple intersecting

points on the surface are computed and connected together toform a tracing curve. This tracing curve lies on the guide

surface. Once this curve is traced, then the traced curve is inserted into the surface which is then divided along the

inserted trace curve. Once the region is traced, several operations can be performed on this surface patch.

During tracing, depending upon the speed and movement of input pen-tablet creates varying curve quality - i.e.

differing gap between input vertices and different total number of vertices in the curve. To eliminate this quality

variation of the traced curve due to tracing speed, the GuTS system provides a �lter with a certain minimum-maximum

threshold value. This �lter helps deciding whether a new vertex needs to be added to the trace curve or not depending

upon the movement, location and difference of the pen-tablet from the previous point. So irrespective of the tracing

speed, the quality of the traced curve remains the same. Before discussing different surface modeling operations, the

algorithm for inserting a curve over the surface is presented.

4.4.2.1 Insert trace curve

The algorithm for the trace curve insertion is presented in pseudo code format as follows: (Input to this algorithm

is a traced curve and a set of guide surfaces. Output from thisalgorithm is a set of surface patches after the traced

curve is inserted into the input guide surfaces):

A For the �rst vertex (current vertex) in the trace curve do the following

A.1 If the current vertex is already a vertex in the surface mesh go to step A4

A.2 If the current vertex is fully inside a face, then insert the current vertex using “face split” (discussed below)

and go to step A4

A.3 If the current vertex is on an edge, then insert the current vertex using “edge split” (discussed below) and go

to step A4

A.4 Mark and update the surrounding faces of the current vertex

A.5 Make the next vertex in the trace curve as the current vertex and proceed to step B

B For each remaining vertex in the trace curve do the following:

B.1 If the current vertex is already a vertex in the surrounding faces, go to step B6

B.2 If the current vertex is fully inside one of the surrounding faces, insert this point using “face split” (discussed

below) and go to step B6

B.3 If the current vertex is on an edge of one of the surrounding faces, insert the current vertex using “edge split”

and go to step B6

58

Figure 4.9 Face split

B.4 If the current vertex is not inside or on an edge of the surrounding faces, project the line segment that connects

the last point and the current point

B.5 Depending upon the status of the projected line segment do one of the following:

B5.1 If the projected line bisects one of the surrounding faces completely, insert a new point at the bisection

point and make this the current point. Refer Fig. 4.11 for an example - projected curve bisects the face

F0, then a new vertex is inserted at the bisection point and face F0 is split to form two faces F01 and

F02, and face F1 is split to form faces F11 and F12. Go to step B6

B5.2 If the projected line passes along one of the edges of thesurrounding faces, insert the vertex on the face

at the other end of the edge and make this vertex the current vertex (refer Fig. 4.12). Go to step B6

B5.3 If the projected line segment lies within one of a surrounding faces, extend this projected line further

such that it fully bisects that face, and go to step B5.1

B5.4 If the projected line segment has zero length, then no unique solution exists - throw the exception and

terminate the insertion process

B.6 Mark and update the surrounding faces of the current vertex

B.7 Make the next vertex in the trace curve the current vertexand continue from the beginning of step B1

C If the curve is closed, then insert the line segment from thelast point to the �rst point in the trace curve, using step

B

D From the �rst vertex of the trace curve, mark the left and right faces such that the trace curve divides the surface

into two regions

4.4.2.2 Face split

`Face split' operation is needed to insert a new vertex inside an existing face. Figure 4.9 shows the face split

operation. When the new vertex (Vn) is fully inside a face (F),then that face is split into 3 new faces (F0, F1, F2),

59

Figure 4.10 Edge split

with the order of vertices (V0, V1, Vn), (V1, V2, Vn) and (V2, V0, Vn) respectively. The old face (F) is replaced

by the three new faces. Then these three new faces' neighboring face lists are updated. Then the neighboring faces'

neighboring face lists are updated to complete the face split operation.

4.4.2.3 Edge split

`Edge split' operation is needed to insert a new vertex on an existing edge. The Figure 4.10 shows the edge split

operation. When the new vertex (Vn) lies on an edge, that edge is split by dividing the adjacent two faces of the edge

into four new faces. Faces F0 and F1 are split into F01 and F02,and F11 and F12 respectively with the order of

vertices (V0, V1, Vn), (V1, V2, Vn), (V2, V3, Vn), and (V3, V0,Vn). Then these new four faces' neighboring face

lists are updated. Then the neighboring faces' neighboringface lists are updated to complete the edge split operation.

The above mentioned face and edge operations does not have any special mechanism to create or maintain high

quality mesh. Due to the same reason, in our currently implemented GuTS system, sometimes (especially during

thick-brush tracing) the mesh results in poor tessellation. In this research, we did not focus on mesh quality explicitly

and maintaining a high quality tessellated mesh is a separate research onto itself.

4.4.2.4 Projection curve

Figure 4.11 shows the state described in pseudo code B5.1. Inthis case the new vertex does not lie in one of the

adjacent surrounding faces to the previous vertex so the trace curve is projected over the faces. Since the projected

curve bisects the face F0 completely, edge split is used to insert a new point. Then, the previous vertex position is

moved to the newly inserted vertex position. At this point asshown in the second picture in Fig. 4.11, the new vertex

lies within one of the surrounding faces. Hence, by face split, the last vertex is inserted. This process is continued

until all the projected curve segments are inserted.

Figure 4.12 shows the projected curve coinciding with one ofthe edges. This corresponds to the state described

in pseudo code B5.2. In this case the projected curve coincides fully with an edge, so continue to the next vertex.

As shown in the second picture in Fig. 4.12, no new faces or vertices are created - just the previous vertex status is

60

Figure 4.11 Projection curve - Bisects face

updated. At this stage since the new vertex lies within the surrounding faces, the new vertex is inserted through the

face split process.

Figure 4.13 shows the projected curve lying within a surrounding face. This corresponds to the state described

in the pseudo code B5.3. In this case the projected curve is extended further such that it bisects the face completely,

as shown in the second picture in Fig. 4.13. Then the scenarioboils down to the state described in B5.1, which can

be addressed as mentioned in the section above corresponding to B5.1. In the current implementation of the GuTS

system, this state is not included and it behaves the same wayas described for the state B5.4, where the exception is

thrown and the tracing process is terminated. Figure 4.14 shows a situation where no unique projection curve exists,

and in this case the GuTS systems throws exception and the tracing process is terminated.

4.4.3 Thick-Brush Tracing

Thick-brush tracing is a process where a thick brush with a user speci�ed radius is traced on the surface. As

the tracing input point moves, the surface region along the traced path with thickness equal to the brush diameter is

dynamically selected. In the GuTS system, similar to zero-point tracing, a �lter with certain threshold value is used

to maintain the quality of the trace curve irrespective of the tracing speed. Then this selected portion of the mesh is

used for further geometric operations. In thick-brush tracing, similar to zero-point tracing, the 3D intersection point

on the surface is computed. Instead of creating a trace curve, in this approach the faces are dynamically updated.

This dynamic update of the mesh results in poor tessellation. Maintaining high quality tessellated mesh is a separate

research onto itself and hence in the implemented GuTS system we did not address this issue.

The algorithm for thick-brush tracing is presented in pseudo code format as follows: (Input to this algorithm is

the radius of the thick-brush, a series of input points of thetraced curve, and a set of guide surfaces. Output from this

algorithm is a set of surface patches, after the boundary of the traced surface region is computed):

C For every input intersection point during the tracing do the following:

C1 Find the face in the surface mesh in which the input intersection point lies

61

Figure 4.12 Projection curve - Coincides with an edge

Figure 4.13 Projection curve - Lies within a face

Figure 4.14 No unique projection curve

62

Figure 4.15 One vertex inside

C2 Check the current face with the sphere of the radius of the thick brush from the current input intersection point

C2.1 If all three vertices are fully outside and none of the edges intersects with the sphere, then mark this as

fully outside, processed and go to step C3

C2.2 If all three vertices of the current face lie within the sphere, then mark this as fully inside, processed and

go to step C3

C2.3 If one of the vertices is inside the sphere and the remaining two vertices are outside, then do the edge

split twice (refer Fig. 4.15) and replace the current face with the three new faces. Make one of the new

faces the current face and go to step C2

C2.4 If two of the vertices are inside the sphere and the remaining vertex is outside, do the edge split twice

(refer Fig. 4.16), and replace the current face with the three new faces. Make one of the new faces the

current face and go to step C2

C2.5 If two of the vertices are on the sphere and the third vertex is outside and if the chord distance between the

inside edge and the surface of the sphere is beyond a certain tolerance limit, insert a new vertex through

“face split” (refer Fig. 4.17). Replace the current face with the three new faces, make one of the new

faces the current face and go to step C2

C2.6 If all three vertices are outside and an edge of the current face intersects the sphere and if the chord

distance between the edge and the surface of the sphere is beyond a certain tolerance limit, do two edge

splits (refer Fig. 4.18). Replace the current face with the three new faces, make one of the new faces the

current face and go to step C2

C3 Make one of the unprocessed adjacent faces the current face and go to step C2.

Figure 4.15 shows one vertex inside and two vertices outside. In this case, in the current implementation of the

GuTS system, either one of the shown ways splits the edges - randomly. Figure 4.16 shows two vertices inside and one

vertex outside. In this case too as above, in the current implementation, in either one of the shown ways the edges are

63

Figure 4.16 Two vertices inside

Figure 4.17 Two vertices `On'

Figure 4.18 Only edge intersects

64

Figure 4.19 Trace around intersection point

split - randomly. Since the faces are traversed through the adjacent faces starting from the input intersection point, the

faces that are processed and marked are only connected from the intersection point and within the brush radius. Even

if other parts of the surface lie within the brush radius, they are not processed intentionally as shown in the Fig. 4.19.

4.4.4 Tracing over Multiple Surfaces

Tracing over multiple surfaces works the same way as tracingover a single surface. Even when multiple surfaces

are used for tracing, at any given instance, only one point isinserted and over one surface. So making use of this,

one surface, called the active surface, that is currently traced over is always maintained. When tracing shifts from the

current surface to some other surface, the other surface is made the active surface. This is done transparently to the

user. As multiple curves are traced, they are traced over multiple surfaces and are associated to that corresponding

surface. Once the tracing process is completed, though it appears to the user that multiple curves are traced over

multiple surfaces, internally each curve is attached to thecorresponding surface. Then the computation of the traced

surface boils down to (a) inserting the intersection curve,and (b) inserting the traced curve to the corresponding

surface, as described in the single surface tracing section. Once the tracing is completed for all the necessary surfaces

and multiple patches are created, they are merged together to form a single surface mesh.

Figure 4.20 shows the step-by-step pictorial view of tracing over multiple surfaces and stitching procedures to get

the �nal desired geometry. Two spheres, A and B, are intersected and the intersecting curve is calculated dynamically

in real-time. The computation of the intersection curve is described in the following section, and the intersection curve

ensures the correct connectivity when the user switches tracing from one surface to another. This intersection curve

is shown in grey. The traced curve which spreads over both thespheres is shown in green - the �nal shape that needs

to be created. As mentioned above, the tracing procedure is performed one surface at a time internally, the same as in

single surface tracing. First the intersection curve is inserted in the geometry. Then the corresponding portion of the

traced curve is inserted in the appropriate surface. This produces the multiple pieces of the �nal geometry traced from

multiple surfaces. In this example A' and B' are the traced patches from the surfaces A and B respectively. Then these

two patches are combined together to form the �nal desired geometry.

65

Figure 4.20 Tracing over multiple surfaces

66

4.4.5 Surface Intersection

In the current implementation, we used the V-Collide [58] collision detection package to identify the intersecting

line segments between the surface meshes. V-Collide is a collision detection library designed to operate on a large

number of arbitrary polygonal objects. It performs ef�cient and exact collision detection between triangulated polyg-

onal models. It makes no assumptions about input structure and works on arbitrary models, also known as “polygon

soups”. V-Collide uses three-stage collision detection architecture:

1. An N-body test �nds possibly colliding pairs of objects,

2. A hierarchical-oriented bounding box test �nds possiblycolliding pairs of triangles, and

3. An exact test determines whether or not a pair of trianglesactually overlaps.

The N-body routine uses coherence between successive time steps of a simulation to perform well in animations

and moving simulations. The hierarchical Oriented Bounding Boxes (OBBs) and exact collision routines are taken

from RAPID [47], a component of V-Collide which is also available as a stand-alone package.

The basic steps involved in using this library are creating objects, adding sets of triangles to these objects, choos-

ing which pairs of objects should be tested for collisions, setting the positions of the objects, performing the collision

test, and getting back reports of the test results. Based on these results and any other parameters of the simula-

tion/interaction, the objects may be moved and the collisions tested again, etc. V-Collide is written in C++, but it also

provides a C interface as well.

The V-Collide library takes the triangulated mesh and returns the list of the intersecting line segments between the

faces in the input mesh. Figure 4.21 shows two simple meshes,each with two triangulated faces. In this case the V-

Collide library returns three line segments in a random order and also the intersecting faces. Then in the GuTS system,

these individual line segments are sorted and connected to form the intersecting curves. These intersecting curves also

store the information about which two surfaces are intersected to form the curve. This information is used to insert

the intersection curves in the appropriate surfaces correctly, as shown in the second and third picture in Fig. 4.21. An

important point to observe here is that the intersecting curve is computed and inserted such that the inserted curve

will match exactly between the two surface meshes. This gives a proper connectivity to stitch surface meshes along

this intersection curve without many additional changes. While the complete intersection algorithm involves several

steps and uses multiple libraries, all the necessary functionalities are implemented seamlessly in the GuTS system -

resulting in the dynamic intersection of surfaces interactively and transparently to the user.

4.4.6 Stitching Surfaces Together

In our current implementation, stitching between surfaceshappens when these geometries intersect over the traced

portion of the region. The intersection curve is computed and intersected to the surfaces such that it ensures the proper

67

Figure 4.21 Inserting intersection curve

68

Figure 4.22 Masks for regular and extraordinary vertices

coincidence between the edges and vertices that con�rms theproper connectivity between these multiple surface

patches (as shown in Fig. 4.21). Since the vertices and edgesmatch properly along the intersection curve, the stitching

between the meshes boils down to creating the connectivity between the faces of the surface meshes accordingly,

maintainingC0 continuity.

4.4.7 Interpolation Subdivision Scheme (Modi�ed Butter�y Scheme)

As mentioned earlier, the GuTS approach is independent of the underlying geometric representation. In our current

implementation of the GuTS system, we used triangular mesh representation. In this section, we present how with

minor modi�cations the surface geometries can be represented using interpolation subdivision surfaces. A basic inter-

polation subdivision scheme called `Modi�ed Butter�y Scheme' is presented here. The Modi�ed Butter�y Scheme by

Zorin et al. [107, 106] is a modi�ed version of the original Butter�y Scheme by Dyn et al. [43], for triangular tilings.

This interpolation scheme producesC1 continuity surfaces and re�nes through a face split rule (orprimal). A `mask'

is a picture showing how the old vertices are used to compute the new vertex for the successive level.

This scheme creates new vertices of valence 6 in the interior. On the boundary, the newly created vertices have

valence 4. The vertices with valence 6 or 4 in triangular tilings are called regular vertices. Vertices with other valences

are called irregular or extraordinary vertices.

Figure 4.22 shows the masks for regular and irregular vertices. For regular vertices, the values area = 1=2+ w; b =

1=8 + 2w; c = � 1=16 + w; d = � w (whenw = 0 is used it represents the original Butter�y Scheme). For thecase

when an edge connects anr -vertex(r 6= 6) and a 6-vertex, the neighbors of ther -vertex are used in the stencil as

indicated in the second picture in Fig. 4.22. Forr � 5 the weights are given by

Sj =

�
1
4 + cos (2�j=r) + 1

2 cos (4�j=r)
�

r
[4.15]

with j = 0 ; :::; r � 1. For r = 3 we takeS0 = 5=12; S1 = S2 = � 1=12; and for r = 4 ; S0 = 3=8; S2 =

� 1=8; S1 = S3 = 0 . When the edge connects two extraordinary vertices, take theaverage of the values computed

69

using the appropriate scheme of the previous paragraph for each endpoint. For boundary edges 1-dimensional four-

point scheme is used. Hence, by adding the subdivision component as mentioned above to the current mesh geometry,

surfaces can be easily represented as subdivision surfacesin the GuTS system.

70

Chapter 5

Multimodal User Interface

5.1 Interaction Challenges in the GuTS Modeling System

The keyboard, mouse and 2D monitor are the most commonly usedinput/output (I/O) devices in conventional

modeling systems. These input devices are suf�cient to provide discrete input, such as input points by clicking a mouse

button or inputting a numerical value through a keyboard. These devices are not perfectly suitable for continuous

operations, such as tracing that is performed in the GuTS approach. Also in the GuTS approach, most of the time

multiple geometries are manipulated while other operations are performed simultaneously. One example is when

multiple guide geometries are transformed (positioned andoriented), tracing is done simultaneously. Another example

is when multiple operations are repeatedly input sequentially in a short period of time. Another example is interrupting

an operation to perform another operation and returning back to the original operation, known as `mode switching'.

To avoid confusion between the word mode (modality) in multimodal user-interface and in tasks performed, we use

the word `task-mode' to represent the latter. So the above `mode switching' will be referred as `task-mode switching'.

Thus the GuTS modeling approach provides some unique challenges for the interface to a modeling program.

The GuTS system can be implemented with a conventional mouseand keyboard user interface alone. Figure 5.1

shows the commonly used tasks in GuTS and the mapping of thosetasks with the conventional I/O devices - if

conventional I/O devices are used in the GuTS system. Figure5.1 shows four columns: �rst left column shows the

tasks list, second column shows the dimension in which the tasks are performed, third column shows the nature of the

dimensions of the I/O devices, and fourth column shows the available I/O devices. `Mapping' is a process to match a

suitable I/O device and its available degrees-of-freedom (DOF) to perform tasks that require certain DOF. For example

a 2D-mouse (2-DOF device) can be mapped to draw on the screen (a 2-DOF task). The same task can be mapped to

perform using a keyboard (a 1-DOF device) using `up', `down', `left', and `right' keys. However, in this case 2 DOF

drawing task is performed using a 1-DOF device, requiring additional mapping of 1-DOF key movements to perform

the 2-DOF drawing task. So to achieve a best match between thelist of tasks and available devices, we need to match

the equivalent dimensions pair on the second and third column in Fig. 5.1. A signi�cant amount of the tasks in GuTS

require mapping with the available conventional I/O devices. This mapping process introduces indirect manipulation

of tasks and operations in user interface. Also, limited I/Odevices means increased `task-mode switching' to perform

71

tasks and hence increased completion time. While use of the traditional I/O devices may produce a workable interface,

it does not address the above mentioned issues in the GuTS modeling approach.

To address these issues, we implemented a novel multimodal user interface in the GuTS system. The term mul-

timodal user interface means use of multiple modes in I/O interaction. In the general sense, a multimodal system is

de�ned [88, 76] as follows: a multimodal system supports communication with the user through different modali-

ties such as voice, gesture, and typing. Literally, `multi'refers to `more than one' and the term `modal' may cover

the notion of `modality' as well as that of `mode'. `Modality' refers to the type of communication channel used to

convey or acquire information. It also covers the way an ideais expressed or perceived, or the manner an action is

performed. `Mode' refers to a state that determines the way information is interpreted to extract or convey meaning.

In user interface design, a mode is “a distinct setting within a computer program or any physical machine interface,

in which the same user input will produce perceived different results than it would in other settings” [98]. The modes

(modalities) used in the currently implemented GuTS systemare: 3D mouse input, pen-data tablet input, speech input,

video (graphics and text rendering) output, and synthesized speech output. Our prototype of multimodal user interac-

tion explores solutions to the above mentioned challenges and provides a �uent, direct, and rapid interface. From the

author's perspective, multimodal interaction with multiple I/O devices enhances the usability of the GuTS system.

5.2 Humans Natural Multimodal Interaction Capability

Humans have a natural ability to use multiple modes in parallel and choose certain mode to perform certain task

dynamically in real-time. Humans use this behavior in several ways for different reasons - such as, to perform multiple

coordinated `sub-tasks' in parallel to complete `a task' rapidly, and to perform `a complex task' by breaking it into

multiple `less complex sub-tasks' and complete the sub-tasks using multiple modes in parallel. For example, humans

communicate through multiple modes in parallel - such as, hand gestures, speech, hearing, visual cues - with ease

and effectively in their day-to-day activities. Another example, driving a car which is a complex task. This complex

task involves several less complex sub-tasks, such as steering, accelerating, changing gears, braking, looking at the

road, hearing noise from other vehicles, etc. Humans use their hands (to steer and change gears), legs (to accelerate

and brake), eyes (to look at the road), ears (to listen to the surrounding noise), etc. Humans perform these multiple

sub-tasks in a coordinated fashion to complete the complex task (i.e. driving).

Utilizing this human's natural interaction behavior, the GuTS system applies the phenomenon of multimodal in-

teraction. Our current implementation simultaneously provides the user with two-handed input, speech recognized

voice input, improved hand-eye coordination, visual output, and synthesized speech output. Since these modes of

interaction imitate the normal communication modes of humans, they present a familiar, effective and direct approach

of interaction between the system and the user. Also since the user interacts with multiple I/O modes simultaneously,

multiple operations are performed simultaneously in a coordinated way which aid in the rapid completion of tasks.

72

Figure 5.1 Mapping of tasks in the GuTS system for traditional I/O devices (if traditional I/O devices are used)

73

5.3 GuTS System User Interface Setup

In this section, we describe the GuTS system's user interface (UI) architecture, its multiple modules, pros and cons

of each I/O mode and device, and the process of mapping different tasks with multiple I/O devices. Figure 5.2 shows

the actual setup of the multiple I/O devices in the GuTS system.

5.3.1 GuTS System's User Interface Architecture

A traditional system's UI architecture with keyboard, mouse, and monitor is relatively straight forward. It requires

two event-handlers for keyboard and mouse, and a rendering/windowing module for visual output. A multimodal UI

system, like the GuTS system, requires multiple modules to manage multiple I/O devices and modes, and a sophisti-

cated command parser to coordinate multiple commands from different modes simultaneously. Figure 5.3 shows the

layout of the GuTS system architecture, its multiple modules, and interaction �ow between these modules.

The `Gesture Recognition' module tracks the input from the pen and processes it to the appropriate data depending

upon the stage it is used. For example, when tracing over a surface in 3D, it takes the 2D screen coordinates of the

pen and transforms it to the 3D geometric world coordinate system as a ray in the view direction. Then this 3D ray is

used to compute the intersection point over the surface, which is further used to generate the trace curve. On the other

hand, in the 2D environment to recognize patterns, such as circles, ellipses, lines, etc, from the scribbled input, the

2D distribution of points are used directly. The `Voice Recognition' module recognizes the user's natural voice input

commands processes it, converts it to a command, and sends itto the `Command Parser'. The `Speech synthesizer' in

real-time dynamically converts text messages (such as errors, warnings, system stages, etc.) to human understandable

language and plays them in audio form. The `Graphics Engine'does the rendering of all 2D and 3D geometries. One

of the complex modules is the `Geometry Engine'. This modulecontains all the data structures and algorithms for

both the curves and surfaces to perform all the necessary geometric computations. Another complex and core module

is the `Command Parser'. This module's primary task is to coordinate all the input and output command interactions

between multiple modules. The `Command Parser' receives multiple inputs and outputs concurrently, and it does the

critical job of recognizing the necessary information, eliminating redundant information, and invoking the appropriate

operation.

The most commonly performed tasks in the GuTS system are:

� Manipulating geometries (guide shapes and regular shapes)

� Manipulating viewpoint

� Tracing operation

� Invoking commands

74

Figure 5.2 Con�guration of I/O eevices in the GuTS system

Figure 5.3 Layout of the GuTS system's user interface architecture

75

� Rendering visual output

� Providing other feedback (such as errors, system stage, etc.) to the user

Figure 5.4 shows the commonly used tasks in GuTS and the mapping of tasks with the I/O devices used. Figure 5.4

contains four columns: �rst left column shows the list of tasks, second column shows the dimensions in which each

tasks are performed, third column shows the dimensions of the available devices, and the fourth column shows the

available I/O devices. It can be observed from Fig. 5.4 that the list of tasks, I/O modes, and devices are matched to

eliminate the mapping process. In our current implementation, we used a 2D display output (shown in gray color) but

the GuTS system allows rendering the visual output in stereoscopic 3D rendering (shown in dotted line). In the GuTS

system, �uency and rapidity are achieved - through mapping with right devices, by allowing direct manipulation

of tasks, and the simultaneous use of multiple I/O devices which minimize `task-mode switching' in the modeling

process.

Manipulation of geometries and viewpoint controls are 6-DOF operations in the 3D environment. The 3D mouse

provides direct 6-DOF input and is used for manipulating geometries and viewpoint controls. This provides direct

manipulation rather than mapped (between 3D and 2D) interaction which is performed using a keyboard or regular

mouse. In the real world, tracing or drawing is performed using a pen or pencil. The direct �uent nature of tracing is

achieved by using the pen-data tablet in the GuTS system.

In the GuTS approach the user must manipulate both the current shape as well as the guide shape. To achieve

natural interaction we use a two-handed interface that mimics the real world drafting process. As shown in Fig. 5.2,

the user holds a stylus-pen in his dominant hand and a 6-DOF 3Dmouse in his non-dominant hand. The pen in the

dominant hand sketches and traces the curve or region of a surface. The dominant hand is used for precise input while

the non-dominant hand controls imprecise manipulation. This allows the user to control a set of operations without

interrupting the current operations in each hand. Though both the hands are used at the same time, the tasks performed

are not totally independent. They are coordinated tasks that bene�t from the use of the two-handed approach. Some

of the earlier research [19, 40, 69, 36] also used a two-handed approach and their experimental results also highlight

the bene�ts of a bi-manual approach as opposed to uni-manualinteraction.

In conventional systems, invoking commands are usually performed through menus. While the GuTS system

provides menus, it also uses voice inputs to invoke commands. If the commands are invoked through menus, it

disrupts the operation that is performed in the dominant hand, causing task-mode switching and wasting of time.

Geometries are rendered in the data tablet display. More about the display, window, and organization of several

controls is discussed later in this chapter. Synthesized voice output is used in the GuTS system, which is considerably

different than prerecorded audio output. In synthesized speech output the dialogues are generated in run-time. This

provides the user proper feedback of the system and error messages while guiding the user on what to do further in

corresponding to real-time interaction, rather than with some pre-recorded audio messages.

76

Figure 5.4 Mapping of tasks with I/O devices in the GuTS system

77

Thus the major tasks in the GuTS system are divided and distributed to the several available I/O modes, to perform

each task directly, �uently and rapidly. Each of these modes' pros and cons are analyzed and and its applicability in

the GuTS system are discussed in detail in the following sections.

5.3.2 Pen-Based Input

� Pros:

– Provides WYSIWYG input interface and direct interaction to draw and sketch (like pen-paper interaction).

– User is already familiar with this type of interaction (likepen-paper interaction) - little or no learning

curve.

– Provides additional functionalities, such as 2D mouse mouse button clicks, pressure sensitive tip, and erase

tip at the back of the pen.

� Cons:

– Only 2D interface - while good for direct interaction for 2D tracing, requires mapping (though minimal)

to trace in 3D.

– Due to the human nature, the draw input using a pen always contains some noise (wiggles). We eliminate

this noise through guided tracing.

A pen in the dominant hand is used to sketch and trace a curve over the surface. Using a �at panel display with

an integrated data tablet allows the user to draw curves directly on the monitor as if drawing on a sheet of paper. This

con�guration enhances hand-eye coordination, since the hand pen input position and the visual geometry output is at

the same point, unlike regular mouse/monitor interface, where hand input positions are at a different position from the

visual display.

Figure 5.5 shows several parts of the pen and its functionalities. These types of pens are becoming standard as

tablet input has become widely used in recent years. In this research, we did not modify or change any of the hardware

of the pen but applied them effectively for drawing and tracing operations that provide �uent and direct interaction.

The two buttons are similar to the left and right buttons on the regular mouse. The front and back end of the pen

is pressure sensitive. As the user applies certain pressure, the tip is activated for input. The front tip is used for

tracing/drawing and the back tip is used for erasing the curve. This avoids task-mode switching and uses both drawing

and erasing operations interchangeably by just �ipping thepen.

5.3.3 6-DOF 3D Mouse Input

� Pros:

78

Figure 5.5 Pen data tablet and its functionalities

– Provides direct 3D interaction (6-dof).

– Works as an additional input mode, enables the use of non-dominant hand and two-handed interaction.

– A good 6-dof device for a desktop based application - requires minimal physical movement. Unlike 3D-

trackers [such as ascension, polhemus trackers] [2, 8] thatrequires large hand movement in 3D space -

causing fatigue to user preventing use for a prolonged period.

� Cons:

– Imprecise input - dif�cult to control in a precise manner. Weuse different snapping mechanisms to achieve

precision from imprecise input.

– While it provides 6-dof control, it does not provide direct 3Dmanipulation as in real-world. This is unlike

real 3D trackers [ascension, polhemus trackers] [2, 8] thatallows moving in real 3D space to input 3D

transformation.

A key advantage of the 3D mouse over 2D devices is that it allows direct control of manipulating the geometries

in 6-DOF in the 3D environment. The 3D mouse is operated usingthe non-dominant hand. The non-dominant hand

is mainly used to control imprecise manipulations such as the guide shapes where automated snapping mechanisms

enable precision from the imprecise input. Apart from controlling the guide shapes, other coarse level controls such as

transforming the geometries, zooming and scrolling are also performed using the 3D mouse in the non-dominant hand.

This allows the user to move around the geometries without diverting from the current operation that is performed

using the dominant hand. Since the non-dominant hand operates at an imprecise level, mechanisms such as automatic

snapping are used to achieve the required precision rapidly. The two input devices on the dominant hand and non-

dominant hand are synchronized to achieve two-handed bi-manual interaction. This allows the user to perform a

complex task using the coordination of both the hands simultaneously, instead of operating single handedly as in the

conventional mouse system.

Figure 5.6 shows the multiple parts of the 3D mouse in the 2D setup. Again in our current implementation, we did

not modify or change any of the hardware of the 3D mouse, but applied it effectively for performing 3D operations that

provides �uent and direct interaction. Eleven different buttons are used as short-cut keys to invoke different functions.

79

The functions of these buttons are assigned such that they assist the tasks that are performed using the 3D mouse.

These functionalities provide additional control to the non-dominant hand and help perform additional tasks without

interrupting other operations performed using other modes. Some of the functions assigned to these buttons are:

� Toggle the manipulation control to guide geometries

� Toggle the manipulation control to regular geometries

� Toggle the manipulation control to viewpoint controls

� Scale up the size of geometries

� Scale down the size of geometries

� Lock the translation component

� Lock the orientation component

� Reset the scene and viewpoint

Figure 5.7 shows additional operations that are performed in the 3D setup. In 3D, three translational and three

rotational components are used directly. As the user switches between the 2D and 3D environment, the 3D mouse

changes its con�guration internally and automatically. Also the mouse buttons reassign their functions accordingly

without any additional user input.

5.3.4 Speech Input

� Pros:

– Works as an additional input mode without interrupting other input modes.

– User's natural mode of communication with little or no learning curve for the user.

– Fast to input the commands through speech.

– Speech recognition and speech input are slowly becoming a mainstream feature in the user interface. For

example, the latest Windows operating system `Vista' comeswith enhanced speech recognition capabilities

built right into the application. This capability allows several applications and users to use speech input as

one of the primary user interaction mode.

� Cons:

80

Figure 5.6 3D mouse and its functionalities in the 2D mode

Figure 5.7 3D mouse and its functionalities in the 3D mode

81

– Though speech-recognition has improved a lot in recent years, still it is not 100% accurate. Making it not

suitable for mission-critical applications.

– User dependent - though not mandatory, still requires user training to achieve good speech recognition

rate, and very sensitive to each user's accent, speech clarity, speaking style, vocabulary, rate of speech, etc.

– Susceptible to the ambient noise, and causes interruption to other users in the surrounding.

– User has to remember (all) the input commands, and the list ofcommands may become long making it

impossible to remember all the commands.

– Invoke unwanted commands due to false-recognition. False-recogntion and confusion in recognition be-

tween `similar sounding' words or phrases.

– Not suitable to recognize natural spoken sentences and extracting commands from the recognized speech

(full sentences) is complex. For example, the following twosentences - “I would like to draw a semi-circle

of radius 5 centimeters” and “sketch an half circle that is 100 millimeters in diameter” - refers to the same

task, but it is algorithmically dif�cult to parse and process the commands correctly.

As seen above, the GuTS system effectively uses both the user's hands with pen and 3D mouse input devices.

While both hands are engaged in an operation, to invoke any additional commands such as the menu operation, the

current operation has to be paused or interrupted. Then oncethe menu operation is invoked, the previous operation is

resumed or started again (`task-mode switching'). Task-mode switching interrupts the current operation and work�ow

of the user and introduces additional unnecessary gaps in the design process. Additional speech input mechanisms

provide the additional mode of input without interrupting the tasks performed by both hands and eliminates task-mode

switching.

For example when the left hand is used to transform the geometry and the right hand is used for tracing, voice

input can be used to issue commands such as `display wireframe rendering' (or) `display shaded rendering' to change

the type of display required at that instance. This eliminates the need for the user to browse through the menus or

toolbars to invoke that command and resume the tracing operation.

5.3.5 Flat Panel Tablet Display

� Pros:

– Provides WYSIWYG visual output.

– Enables hand-eye coordination, because user sees the pen and the visual display directly and at the same

spot.

� Cons:

82

– Limited resolution and screen display area.

– Not suitable for stereoscopic display.

A �at panel display with an integrated data tablet allows theuser to draw curves directly on the monitor as if

drawing on paper (refer Fig. 5.2). This setup works as both the input and output mechanism, and enhances the

effective hand-eye coordination of the user.

Figure 5.8 shows the con�guration of windows in the GuTS system. Menu commands can be invoked through pen

tablet or voice input. The text display shows the system statistics and I/O device status of multiple modes, such as

which I/O modes are on/off, 3D mouse control status, rendering frame rate, etc.

The controls at the right-hand side are grouped into curves,surfaces, and view/render controls. Based on the

working task-mode, these controls are brought to the foreground. Each of these control panels is shown in Fig. 5.9.

These control panels are shown here to specify the arrangement of additional controls in the windowing system in the

GuTS system.

5.3.6 Synthesized Speech Output

� Pros:

– Provides an uninterrupted additional mode of output.

– Does not distract (or) deviate the user's visual focus from the current task - unlike error messages or dialog

boxes that disrupt the user's visual focus.

– Natural language feedback to the user - easy and clear to understand.

– Synthesized speech output slowly becoming a mainstream capability. For example, the operating system

Windows Vista comes with a new human-sounding speech synthesizer. This enhanced capability, will

allow several applications and users to use synthesized speech output in their day-to-day use.

� Cons:

– Ears can get overwhelmed and sensitive after hearing auditory feedback for a prolonged period of time.

It is important to provide the user with a steady stream of feedback and unambiguously inform the state of the

system. In addition to the visual output and cues such as graphical displays, symbols and colors, we use auditory

feedback with synthesized speech output to provide additional uninterrupted feedback. Speech output also becomes

important when the graphical display of the feedback is not suf�cient.

For example, when a user tries to revolve a curve without de�ning the centerline, the system speaks out saying

`no centerline exists, create centerline'. In some cases, voice output is used as a mechanism to guide the user on

83

Figure 5.8 Windowing in the GuTS system

Figure 5.9 Control tabs in the GuTS system

84

what to do further. This assisting mechanism helps the user learn the system faster without the need to remember the

sequence of operations. Also, this leads to interfaces thatallow the user to keep his visual attention focused on the

current operation, without the distraction of dialog boxesor text output windows as in the conventional application.

For example every time there is an error, it is shown in a text window and the user shifts his attention from the graphics

window to the text window to read the message and then have to focus back to the graphics window. The additional

auditory output eliminates switching the user's attention.

5.4 Technical Speci�cations

The GuTS system is written in Visual C++. It uses DirectX's Direct3D [3] as the underlying graphics library.

The current implementation runs on Microsoft Windows-based systems. The following table shows the hardware and

software components of the input and output devices of the GuTS system. This information will be helpful for the

readers in recreating the GuTS system.

I/O Device Software components Hardware components Company information

Pen Data Tablet Data Tablet Driver from

Wacom

Wacom www.wacom.com

3D Mouse 3D Mouse Driver from

Logicad

Magellan www.logicad3d.com

Speech Input Microsoft speech recogni-

tion API (or) IBM Via

voice speech recognition

system

Generic Microphone www.microsoft.com

www.ibm.com

Synthesized

Speech Output

Microsoft speech synthe-

sizer API

Generic speaker set www.microsoft.com

Table 5.1 Speci�cations of multimodal user interaction components

5.5 Variations of Modeling Applications with Multimodal User Interface

The above discussed I/O devices con�guration in this chapter is one example of how multimodal user interface

can be used in a modeling system (i.e. the GuTS modeling approach). The above discussed (geometric) modeling and

multimodal user interface concepts can be extended to a variety of different applications. For example, we present two

different applications - `Molecular Modeling System' and `Detailed Virtual Design System' (DVDS) - that were de-

veloped by the author that demonstrate how the above discussed modeling and multimodal user interface concepts can

85

Figure 5.10 Molecular modeling using `Fishtank VR' interface

be adopted for different applications. These two examples demonstrate the applicability and similarity of multimodal

user interface design in this research for various applications.

5.5.1 Molecular Modeling System

First application is a molecular modeling system with multimodal user interaction in an immersive virtual environ-

ment. In this application [13], we developed an environmentthat visualizes and models complex protein structures,

1,000s to 10,000s (or more) of atoms per molecule. This framework allows modeling and manipulating molecular

structures through intuitive natural interaction, directmanipulation in 3D, and a time-ef�cient interactive environment.

Figure 5.10 shows an user interface setup very similar to theGuTS system, but with a couple of differences -

use of a 3D stereoscopic display and use of a regular 2D mouse instead of a pen tablet. Extending this research to a

large immersive scale, we developed a detailed complex multimodal environment for molecular modeling. Since the

stereoscopic display provides depth perception (comparedto a 2D display), it helps the user to visualize, analyze, and

understand complex molecular and protein structures in 3D with ease.

Figure 5.11 shows different components that are used in thismolecular modeling system. The readers will notice

the similarity of the different user interface components between this system, the DVDS system (refer Section 5.5.2),

and the GuTS system. Some of the differences are use of head tracking and additional controls for secondary users

allowing collaborative modeling and visualization between multiple users.

Figure 5.12 shows the detailed system architecture of the molecular modeling system. In this case three dedicated

computers were used for different tasks. First, a dedicatedgraphics hardware for 3D stereoscopic rendering. Second, a

dedicated computer for processing input 3D trackers and gestures from the gloves. Third, a dedicated sound server for

processing the audio input and output. All three computers are connected through a network and work synchronously

and seamlessly with the user's interaction. While the overall concept of the multimodal user interface is similar to

86

Figure 5.11 Different components in the molecular modelingsystem

Figure 5.12 System architecture of the molecular modeling system

87

the DVDS and GuTS systems, this application setup demonstrates the scalability of this concept to achieve a high

performing distributed environment. More importantly, inall the applications (the GuTS System, DVDS, and the

molecular modeling system) the underlying analysis and mapping of different available I/O devices to the tasks that

need to be performed remains the same. This demonstrates that the concept of this multimodal user interface design

is scalable and it can be applied, modi�ed, extended to any number of applications with varying I/O devices.

Figure 5.13(a) shows the user modeling in front of the immersive display. Figures 5.13(b) and 5.13(c) show the

virtual hand corresponding to the user's real hand. Readerscan observe the virtual �ngers in the virtual hand exactly

replicate the real �ngers of the user. In the following sections, we present how the tasks and I/O devices are mapped

for this application.

5.5.1.1 Set of tasks

The �rst column in Table 5.2 lists the major tasks that are commonly performed in a molecular structure visu-

alization, modeling and �tting program. The word (F) in column 1, represents that the particular task is a �ltered

task of some other task. For e.g. 3D position is a �ltered operation of 3D position and orientation, where orientation

parameters are �ltered out. Similarly, “Zoom In” task is a �ltered operation of 3D position, where the translation of

camera viewpoint is allowed in only one dimension. It is important to mention that in this section we focus on the

task, rather than how or what technique is used to perform that particular task. For example, we focus on task “select

an object”, and not how it can be selected such as ray casting,collision detection, or spatial proximity.

Second column shows the required degrees of freedom for eachtask. Third column shows the nature of task, i.e.

continuous (C), discrete (D), repetitive (M), and need visual guidance (V). The Tag (V) means, during that particular

task the user need to visually see the changes to perform thattask correctly. In short, they are visually dependent

tasks. Forward slash, for e.g. C/D means that task can be either continuous or discrete. Having grouped the tasks, the

next step is to identify the best suitable I/O modes to perform each of these tasks that provides natural, intuitive and

effective interaction to the user.

5.5.1.2 Matching tasks with I/O modes

Our approach to identifying the best suitable mode is to assign a similar mode that a user will commonly use in a

real world scenario. Matching tasks with multiple I/O modesis totally different than mapping the keyboard and mouse

events in a desktop application. It is mainly because in multimodal interaction, the number of I/O devices increases

several fold, dimensionality of the I/O devices also changes considerably and the I/O modes vary dramatically. The

available input devices and its DOF and its nature can be listed as follows:

Once the DOF, the nature of the devices, and tasks are found, it is easy to �nd the most suitable I/O modes for the

task. The fourth column in Table 5.2 lists the most suitable I/O modes for each task. Table 5.4 provides the physical

connection between the human part, I/O devices, and the assigned tasks.

88

(a)

(b) (c)

Figure 5.13 User modeling molecular structure in front of the immersive display

89

Tasks DOF Nature I/O Mode

Camera Navigation

3D Position, Orientation 6 CV TG

3D Position (F) 3 CV TG

3D Orientation (F) 3 CV TG

Zoom In/Zoom Out (F) 1 C/D,V TG/A

Look Along X Axis 1 D A

Center and Zoom Atom H 1 DM N

Geometry Navigation

Go to Atom H 1 D A

Go to Previous Atom 1 D A

Go to Next Residue 1 D A

Modeling/Editing

3D Position, Orientation 6 CV TG

3D Position (F) 3 CV TG

3D Orientation (F) 3 CV TG

Torsion Angles (F) 1 CV TG

Delete Atom/Residue 1 D A

Apply/Cancel Changes 1 D A

Undo Last Change 1 D A

Geometry Selection

Pick Atom (by pointing) 1 DV TG

Pick Atom (by name) 1 D A

Geometry Query

Get Distance 1 D A

Get Atom Information 1 D A

Feedback To User

Error Report 1/2/3 D/C,V S/I

Statistics 1 DV S/I

Visual Cues 1/2/3 CV I

Table 5.2 List of commonly performed tasks

C: Continuous, D: Discrete, V: Visual, F: Filtered, T: Spatial Trackers, G: Glove
Gestures, A: Audio Input, N: Natural Language Input, S: Speech Output, I: Immersive
Display

90

I/O Devices DOF Nature

Spatial Trackers (T) 6 CV

Gloves (G) 1 D

Audio Input (A) 1 D

Natural Language Input (N) 1 DM

Immersive Display (I) 3 CV

Synthesized Speech Output (S) 1 D

Table 5.3 Available I/O devices, its DOF and nature

Human Part I/O Devices Tasks

Left hand Tracker, Glove Camera navigation

Right hand Tracker, Glove Geometry edit/select

Head/body Tracker Camera navigation

Mouth Voice input Audio commands

Eyes Visual display Visual feedback

Ears Speech output Auditory feedback

Table 5.4 Physical connection between human parts and I/O Devices

91

Figure 5.14 Matching tasks and modes

In short, camera navigation operations are grouped as `viewmode', geometry editing and selection operations as

`editmode'. Then by default, left hand for `viewmode', right hand for `editmode', head/body for the �ne control of

`viewmode', and wand in the secondary user can be used eitherin `viewmode' or `editmode'. The mode of each hand

can be easily changed from `viewmode' to `editmode' and viceversa. When both the hands are in the `editmode',

both hands can be used to pick two different atoms simultaneously. In this mode, it is easy to pick two atoms and

issue a voice command such as “get distance”, to get the distance. Similarly, as the user feels appropriate, different

con�gurations can be set dynamically in real time. Also a particular mode can be turned on or off. For example, by

issuing voice commands such as `start head tracking' or `stop head tracking', head tracking can be started or stopped.

Figure 5.14 shows the overall procedure of matching the tasks with I/O modes and establishing the physical

connection with the user. Currently these steps are con�gured manually. This can be automated by knowing the

list of tasks, availability of the number of modes and their functionalities, and its nature. Once these are known

the appropriate I/O mode can be assigned automatically for each task. Other parameters such as relative/absolute,

precise/coarse, natural human practices, etc., play a rolein assigning the tasks. For example coarse actions are assigned

to non-dominant hand and precise actions are assigned to dominant hand.

The current approach works well and is easy to customize for several operations and con�gurations. The integra-

tion of multiple modes for a very complex interaction environment needs a sophisticated failure handling system. For

example if any of the modes fail, without much disturbance tothe user, the system should be able to infer the input

from the other available modes.

5.5.2 Detailed Virtual Design System (DVDS)

The second example application is `Detailed Virtual DesignSystem' (DVDS) [12]. This application contains

a framework for detailed geometric modeling in a multimodalvirtual environment. Detailed design involves the

development of a detailed model of the product. This includes de�ning the features, determining their dimensions,

tolerances, etc. Almost all of the CAD systems are developedfor detailed design. But due to the interface and

interaction techniques, 1D and 2D I/O devices, they make shape modeling a time-consuming and tedious task. The

92

Figure 5.15 Layout of DVDS architecture

nature and architectural development of the DVDS provide higher dimensional multimodal interaction between the

designer and the system, thus making the design process faster and easier.

The DVDS system supports multiple input-modes (hand motions, gestures, and voice commands), and multiple

output-modes (stereoscopic rendering, and synthesized speech/sound output). Some of the important features of this

framework include: multimodal interaction between the designer (human-being) and system (Bene�ts: Increased

communication between the designer and the system), multiple designers simultaneously collaborate in the same

environment (Bene�ts: Effective collaboration between designers, avoids ambiguity and reduces design time), and

seamless integration with the existing industry standard CAD systems (Bene�ts: Avoids data translation and paves the

way to merge novel VR technologies to embrace well developedindustry standard CAD knowledge).

Figure 5.15 and Fig. 5.16 show the system architecture of DVDS. DVDS is an intermediate software layer, which

resides between the hardware and the commercial CAD system.DVDS' command parser module synchronizes the

multi-modal inputs, which arrive simultaneously from different kinds of input devices. It parses the input commands

and redirects them accordingly to the CAD system to activateany geometric manipulations and/or to the graphics

engine for display and navigation operations.

You will notice the similarity between the GuTS system, molecular modeling system, and the DVDS system

architecture. Some of the key differences are: in DVDS, use of a commercial CAD system as the underlying geometric

engine, use of an immersive stereoscopic 3D display, and �ngers-gesture recognition. Also, in DVDS the modeling

is done differently than in the GuTS system. In DVDS, the usermanipulates the control points and parametric values

directly to simulate the CAD modeling system, but using direct multimodal user interface.

Table 5.5 shows the generic sketch entities that are supported in DVDS. Each sketch entity has a set of control

points, which help to change the dimensions and modify the shape of the sketch, and a handle, which is used to

transform the sketch entity. The handle is mostly at the geometric center of the sketch entity, as shown in Table 5.5.

93

Figure 5.16 DVDS - System architecture

94

Table 5.5 Generic sketch entities and its control points andhandle

Figure 5.17 Sequence of feature manipulation operations inconventional CAD systems

Figure 5.18 Sequence of feature manipulation operations inDVDS

95

Figure 5.19 Gestures in DVDS

Due to the architectural design of the conventional CAD systems' interface, the sequence of operations in CAD sys-

tems is unidirectional, as shown in Fig. 5.17. On the other hand, in DVDS the sequence of operations is bi-directional

(refer Fig. 5.18) taking advantage of the multiple modes. For example this allows the designer to dynamically change

the feature de�nition and sketch parameters simultaneously using both his/her hands, while changing the viewpoint

orientation using a different mode of input.

In DVDS, a data glove is used to capture detailed movements of�ngers and recognize �nger gestures dynamically

in real-time. Figure 5.19 shows different gestures and their mapping to geometric and viewpoint manipulations. The

gestures are grasp, release, point, ring and okay. Grasp is used to grab the object or viewpoint to orient in 6 degrees

of freedom (DOF). Release is a noti�cation of end of graspinggesture. Point gesture is used to relocate the model

or select a small point by pointing at it. This gesture is useful in manipulating tiny features. Ring gesture is used to

reshape, modify the feature by pulling, pushing, twisting the control points. Gesture okay is to con�rm the action.

The primary operations are freeform transformation and constrained transformation of the part or viewpoint. Usually

the viewpoint is changed so that the accuracy of the geometryis maintained. Another kind of operation is zoom in

and zoom out. These operations are manipulated through direct hand motion and gestures. Apart from gestures, voice

input is also used for invoking commands.

Figure 5.20 shows the user in front of the immersive large display performing modeling. In this �gure you will

notice �oating 3D menus (to replace 2D menus on the desktop systems) on the right side of the picture, providing

menu controls to the user in the virtual environment.

These two example applications demonstrate that the concepts of multimodal user interaction used in the GuTS

system can be adopted to (a) a wide variety of application areas, (b) with a wide variety of application-speci�c I/O

modules, (c) with a wide variety of application-speci�c custom hardware devices, and (d) with a varying degree of

complex distributed environments. In fact, the GuTS systemitself can be extended to use the following components:

large immersive display systems that use 3D stereoscopic display, gloves for �nger gesture, 3D trackers for hands and

96

Figure 5.20 User in front of DVDS immersive display

head tracking, and use of large-scale touch-enabled two-handed immersive desks for replicating life-size drafting and

modeling platforms.

97

Chapter 6

Results

In this chapter we present examples of curve geometries and 3D surface models that we created using the GuTS

system. These examples demonstrate several features of theGuTS approach that are implemented in the GuTS sys-

tem. Also, readers can observe that in addition to GuTS-speci�c operations, traditional modeling operations, such

as geometry mirroring, extruding, revolving, and lofting operations, are extensively used in creating these examples.

Some of the key points to observe from these examples are:

1. Use of guide geometries to create new geometries through tracing

2. Create new geometries easily without knowledge of the underlying geometric representation

3. “What You See Is What You Get” (WYSIWYG) modeling approach

4. Create complex geometries easily and rapidly through multiple guide geometries

5. Create precise geometries that are the exact replica (or portion) of the guide geometries

6. Create geometries the same way regardless of the underlying geometric representation

6.1 Examples of Curve Geometries

Figure 6.1 was created using circular guide shapes and one elliptical guide shape. This drawing was completed

in less than 30 seconds. As this example demonstrates, in theGuTS approach, even a complex shape can be created

rapidly and easily by using only simple guide shapes. In thisdrawing only half of the diagram is sketched while the

other half is mirrored. Also, most of the circular arc segments are connected such that they maintainC1 continuity pre-

cisely. Since the GuTS approach provides several snapping mechanisms, these aligning operations are done precisely,

rapidly and easily.

Figure 6.2 shows an illustrative sketch of a conceptual car model. All the freeform curves - except the arcs and

ellipses - are traced from French curves. Each curve is the result of stitching several small pieces of curves together.

Yet, it is impossible to locate the stitch regions. Smoothness of the curves is quite evident. Due to the use of several

98

Figure 6.1 Illustrative sketch of a moose head

99

Figure 6.2 Illustrative sketch of a car

automated stitching mechanisms, as discussed in previous chapters, the smoothC1 connectivity is maintained between

multiple pieces. The small circular dots in this picture arethe intersection (connection) points between the curves.

While the sketch of the moose head (Fig. 6.1) and the illustrative sketch of the car (Fig. 6.2) are concept shapes, the

geometries used to create these shapes are precisely tracedfrom the guide shapes (such as circles, ellipses, and French

curves), and the traced curves are aligned precisely using several snapping mechanisms.

Figure 6.3 shows another example of a curve geometry. In addition to French curves, several other guide shapes,

such as an ellipse, circle, and line segments, were also usedto sketch this geometry. When designing ship hulls, instead

of French curves, the standard “ship-curves” can be used to design the hulls precisely. The small circular dots in this

picture are the intersection (connection) points between several curves.

Figure 6.4 shows an illustrative sketch of a sword. All the freeform curves were drawn using a French curve.

Fig. 6.4(a),(b),(c), and (d) show the progress of the diagram. The actual French curve that is used can be seen in

these �gures. Fig. 6.4(e) shows the completed sketch. A one-point pivotal snap is represented by the circle drawn

with double lines (Fig. 6.4(a)) at the point of connection between the guide shape and the regular curve. Similarly, the

crossed box in Fig. 6.4 (b) and (c) shows that a tangential condition snap exists between the guide shape and the regular

curve. These visual cues dynamically provide direct feedback of the snapping conditions to the user in real-time.

Figure 6.5 is an illustrative sketch of a �ower and plant which shows several features of the GuTS approach. First,

as shown in Fig. 6.5(a), a circular guide is positioned at different places and copied fully to create new regular curves.

Yellow represents the guide curve being copied to form a regular curve. Green lines represent regular curves but are

not selected. Figure 6.5(b) shows elliptical guide curves placed at different locations and copied to create new regular

curves which form the �ower petals. The blue ellipse is the guide curve and the yellow curve is the recently copied

curve. Since all these circles and ellipses are created in full, they are copied in a single step instead of tracing all

over the geometry. Figure 6.5(c) shows the completed illustrative sketch of the �ower and plant diagram in red. Red

represents the curves that are selected for further operation. In this case, as shown in Fig. 6.5(c), the selected regular

(red) curves are converted to guide curves (shown in blue). Now the whole �ower and plant sketch itself is a guide

100

Figure 6.3 Illustrative sketch of a boat

101

(a) curve geometry is traced from a French curve (b) ...tracing further...

(c) ...tracing further... (d) compled half part of the sword

(e) after mirroring the half, the resulting completed sword

Figure 6.4 Illustrative sketch of a sword

102

geometry. It can now be used as a guide shape to create additional geometries. Figure 6.5(d) shows this whole set of

guide geometries used for tracing. The tracing portion is shown in yellow as it progresses.

Figure 6.5(e), the sketch to the right, shows the completed sketch that was created by tracing the outer boundary of

the guide shapes (shown in blue). Figure 6.5(f) shows a totally different and artistic form of the �ower and plant which

is drawn using the same guide shapes. These drastically different sketches illustrate the versatility of this approach. By

simply using these guide shapes, several varieties of sketches can be easily created from imagined ideas. This example

also shows that these arcs and curves are precisely copied, although in pieces, to retain the precision of the geometries

during several stages.

Figure 6.6 shows the diagram of a guitar model. Fig. 6.6(a) shows as it was drawn. A French curve was used

to draw the body of the guitar. A straight line tool and other curved tools were used for the neck of the guitar.

As mentioned earlier, the blue crossed box represents the establishment of a tangential snap condition between the

guide curve and the regular curve. Fig. 6.6(b) shows the completed guitar diagram. The small circular dots show the

intersection points between multiple curves. As we will seelater in this chapter, this diagram is used as a base to create

a 3D guitar model.

Figure 6.7 shows the diagram of a pen model. Fig. 6.7(a) showsas it was drawn. A French curve was used to

draw the curved body parts of the pen model. A straight line tool was used to draw the clip portion. As mentioned

earlier, the small circular dots show the intersection points between multiple curves. Fig. 6.7(d) shows the completed

pen diagram. We will see later in this chapter how this diagram is used as a base to create a 3D pen model.

Figure 6.8 shows examples of creating curves geometries in the GuTS system using Bezier representation. Fig-

ure 6.8(a) shows two Bezier curves represented as a single curve segment. It also shows the curve segment's corre-

sponding control polygon. Figure 6.8(b) shows after the user interactively traced partly over the two Bezier curves

(yellow segment). In this case, the starting point on the �rst curve and the ending point on the second curve are

completely random. The user traces over this Bezier curve segment interactively as if it is a single curve - exactly

like Subdivision representation. In these diagrams, the control polygons are made visible to demonstrate tracing is

performed over Bezier curve segments. In the GuTS system theuser can turn off the visibility of the control polygons,

rendering only the resulting Bezier curve. The user will notnotice any difference and s/he will perform the tasks ex-

actly the same way regardless of the underlying geometric representation. This example demonstrates that the GuTS

approach allows the same user interface to be transparentlyused regardless of the underlying geometric representation.

Figure 6.8(c) shows the newly created Bezier curve segment from the traced region shown in Fig. 6.8(b). The newly

created curve contains two new Bezier curves that are represented as a single curve segment with its corresponding

new control polygons. Figure 6.8(d) shows another example that contains multiple, in this case four, Bezier curves

represented as a single curve segment. As the user traces over the curves randomly (from a random starting point to

a random ending point), the resulting new traced curve is shown in Fig. 6.8(e). Note that the newly formed Bezier

curves still maintainC0 continuity from the original guide curve.

103

(a) multiple circular guides

are used to create the stem

(b) elliptical guides are used to create

the petals

(c) whole sketch is copied and converted

into a complex guide (shown in blue)

(d) tracing along the guide to

create new geometry (shown

in yellow)

(e) the completed new traced geometry (shown in yel-

low)

(f) using the same guide, but traced differently pro-

duces totally different resulting geometry (shown in

red)

Figure 6.5 Illustrative sketch of a �ower and plant

104

(a) (b)

Figure 6.6 Diagram of a guitar

105

(a) curves forming the body of the pen traced from a French curve

(b) pen handle and other parts of the pen are traced

(c) fully traced diagram of the pen aligned along the center-axis line (shown in green) - small blue circles represent

the intersection of the curves, and the yellow circle represents the geometric center of the selected curves

(d) completed diagram of the pen

Figure 6.7 Diagram of a pen

106

(a) two Bezier curves represented as a single

curve segment and its corresponding control

polygon

(b) user interactively traced over two Bezier

curves with random start and end points as if

it is a single curve (shown in yellow)

(c) newly traced curve segment consists of

two curves (shown in yellow), and its corre-

sponding new control polygon

(d) another example where four Bezier

curves are represented as a single curve seg-

ment and traced randomly

(e) newly traced curve segment consists of

multiple curves - note the resulting curve

maintainC0 continuity from the guide curve

Figure 6.8 Creating curve geometries (using Bezier representation)

107

(a) a French curve is being used to trace part

of the earphone

(b) base of the earphone is

being traced from a circular

guide shape

(c) shows half-completed ear-

phone sketch

(d) mirrored to complete earphone model and

then a wire is added to the base using freeform

tracing and a smoothing operation was applied

Figure 6.9 Creating an headset/earphone using various guide shapes

108

Figure 6.10 Guitar model

Figure 6.9 shows creating an headset/earphone model using different guide shapes - French curve, circular, ellip-

tical, line, guide shapes, and freeform tracing. Figure 6.9(a) shows a French curve is being used to trace the geometry

that connect the earbuds and the base. Figure 6.9(b) shows a circular guide shape is being used to create the base of

the earphone. Figure 6.9(c) shows after the earbud and base feature are created using elliptical and line guide curves.

Figure 6.9(d) shows the completed earphone model after mirroring and adding the wire to the base using freeform

tracing.

6.2 Examples of Surface Geometries

The �rst sets of surface models in this section show how surface geometries are created using curve diagrams

designed in the GuTS system. These examples demonstrate that curves created by the GuTS approach can be further

easily used to design surface geometries. These examples also demonstrate that the conventional modeling operations,

such as extruding, revolving, lofting, and mirroring operations, work well along with the GuTS operations. Figure 6.10

shows a guitar model which is an extruded object of the guitardiagram shown in Fig. 6.6(b). The top and bottom faces

of the guitar are tessellated and rounded along the edges to give the completed model a smooth �nish. Though creating

models through extrusion is not new, the curves designed in the GuTS approach can be used to create 3D surfaces by

using the conventional modeling approaches.

Figure 6.11(a) shows three curves that are drawn using the GuTS system. Fig. 6.11(b) shows the lofted surface of

a bottle model, which is created by lofting through the curves shown in Fig. 6.11(a). This example shows another way

of using a traditional approach - lofting - to create 3D surface models from the curves designed in the GuTS system.

Figure 6.12(a) shows a pen model that is created using the curve diagram shown in Fig. 6.7. Several curves are used

to create the various pieces of surface geometries to form the �nal shape of this pen model. Conventional modeling

109

(a) (b)

Figure 6.11 Bottle model

110

operations, such as extrusion and revolution operations, create these surface geometries. Fig. 6.12(b) shows the pen

model with transparent rendering to display the internal components of the model.

The previous three �gures showed how curve geometries created in the GuTS system can further be used to create

surface geometries. The following �gures show the two typesof tracing operations that are performed in the GuTS

system: zero-point tracing, and thick-brush tracing. These examples also demonstrate how these two types of tracing

are interchangeably used over single, as well as multiple, guide surfaces to create complex geometries easily, directly

and rapidly.

The series of �gures in Fig. 6.13 illustrates the use of zero-point tracing to trace a freeform leaf model in a single

step. Figure 6.13(a) shows the extruded freeform surface (yellow) in wire-frame rendering while the traced curve is

shown in red. Figure 6.13(b) shows the same in shaded rendering. Figure 6.13(c) displays the model once the traced

curve is inserted into the surface geometry. Once this traced curve is inserted, the actual surface geometry is divided

into two portions, inside and outside. Then the inner portion of the leaf is highlighted in red. Figure 6.13(d) shows

only the required leaf portion, after the unwanted outside surface geometry is removed (deleted). Figure 6.13(e) is the

same surface but in wire-frame rendering to provide the details along the boundary.

The series of �gures in Fig. 6.14 is another example of zero-point tracing over an extruded surface. Figure 6.14(a)

is the result of the �rst character being traced and inserted. Figure 6.14(b) displays the two characters already traced,

inserted and removed while the third character is just traced. Figure 6.14(c) is the result of the third character being

inserted and erased. Figure 6.14(d) shows the surface afterall the four characters are cut out. Figure 6.14(e) shows a

freeform curve traced from one surface boundary to another surface boundary and inserted to split the surface geometry

into two pieces. Then, the highlighted (red) portion of surface is removed to achieve the �nal surface geometry, as

shown in Fig. 6.14(f). The sequence of these images shows that the user can trace directly over the surface, without

any knowledge of surface geometries or the underlying geometry representation, and create complex shapes easily and

directly.

Figure 6.15 shows the sequence of images that describe the creation of a pair of eyeglasses using zero-point tracing.

This is another example of how zero-point tracing can be usedto design geometries. In Fig. 6.15(a) the rim portion of

the eyeglasses is drawn over a freeform surface. For Fig. 6.15(b) the curve is inserted and divided into two regions,

highlighting the inner surface region in red. Figures 6.15(c) and (d) show what remains after the unwanted outer

surface portion is removed, in wire-frame and shaded rendering respectively. Mirroring this one side of the eye-glass

along the middle portion of the frame produces the other sideof the eyeglasses. Figures 6.15(e) and (f) show the �nal

eyeglasses after the mirror operation is completed and rendered in wire-frame and shaded mode respectively.

Figure 6.16(a) shows a traced Bezier curve segment (from Fig. 6.8(c)) was extruded to create a 3D surface, which

then had a zero-point tracing performed on it (Fig. 6.16(b)). Figure 6.16(c) shows the traced region erased from the

surface. In Fig. 6.16(d) another zero-point tracing operation was performed on the surface. After erasing the traced

region, the resulting �nal surface geometry is shown in Fig.6.16(e).

111

(a) (b)

Figure 6.12 Pen model

112

(a) shows zero-point tracing of a leaf sketch on a

surface

(b) same as in Fig. 6.13(a), rendered in shaded

mode

(c) traced curve is inserted into the surface and

the corresponding region is selected (shown in

red)

(d) shows the required leaf por-

tion after the unwanted surface ge-

ometry is removed

(e) same geometry as in Fig. 6.13(d) but ren-

dered in wire-frame mode to show the details

Figure 6.13 Creating a leaf model through zero-point tracing

113

(a) shows character `G' is traced and inserted into an extruded

surface

(b) shows characters `G' and `u' trimmed from the surface, and

character `T' is just traced

(c) shows after the character `T' is trimmed from the surface (d) shows the word `GuTS' trimmed from the surface

(e) shows part of the freeform surface is being trimmed througha

zero-point traced curve (shown in red on the left side)

(f) shows the �nal surface geometry

Figure 6.14 Freeform zero-point tracing of characters

114

(a) the rim portion of the eye-glass is traced over

a surface

(b) the traced curve is inserted into the surface

(shown in red)

(c) the rim portion after the unwanted outer part is removed (d) same as Fig. 6.15(c) rendered in shaded mode

(e) mirror the half portion to

form the full eye-glass model

(f) completed eye-glass model rendered in

shaded mode

Figure 6.15 Sun-glass model through zero-point tracing

115

(a) Bezier curve is used to create

an extruded surface, and a curve is

traced over this surface

(b) traced curve is inserted into the

surface and the traced region is high-

lighted (shown in red)

(c) the traced region is erased from

the surface

(d) another curve is traced and in-

serted into the surface and the region

is highlighted (shown in red)

(e) the resulting surface after the

traced region is erased

(f) shows another example, while

the surface is same, but a differ-

ent curve in the shape of a �ower

is traced and inserted into the sur-

face

(g) resulting �ower shaped surface

after the unwanted surface region is

removed

Figure 6.16 Creating surface geometries (from Bezier curves)

116

(a) (b)

Figure 6.17 Tracing through thick-brush

Figure 6.16(f) shows another example of a surface extruded from a Bezier curve segment (from Fig. 6.8(e)). A

�ower-shaped zero-point trace was performed on this 3D surface and the traced region is shown in red. Figure 6.16(g)

is the �nal surface in wireframe rendering after the traced region is trimmed from the extruded surface. The above two

examples demonstrate that 3D surfaces are created from Bezier curve segments exactly the same way as if interpolation

subdivision curves were used. Regardless of the curve representation, the resulting surface geometries and surface

operations remain the same in GuTS approach.

So far, the examples showed different models created by using the zero-point tracing operation. Figure 6.17 shows

a thick-brush tracing operation where a thick brush with therequired thickness is used to trace over a surface. As the

user traces, a region of the surface is traced, precisely selecting the boundary at every cycle of the drawing process.

In Fig. 6.17(a) a thick-brush was traced over a simple torus surface and the selected portion of the surface is shown

in red. Figure 6.17(b) shows the unwanted outer portion of the surface was removed. While the geometry torus

itself is simple and precise, the haphazard tracing operation over this simple object creates a more complex surface.

This complex piece of surface is easily traced from simple torus geometry, highlighting the advantages of the GuTS

modeling approach. If this same model was modeled using conventional modeling systems, the user would have to

draw multiple complex curves that form the boundary UV curves of the �nal geometry and then loft these curves to

get the �nal geometry. On the other hand, in the GuTS approach, all these operations are performed in a simple single

tracing operation directly over the surface.

Figure 6.18 shows the sequence of images in designing a lamp model. Figure 6.18(a) displays the initial curves that

were used to revolve and create the surfaces that are shown inFig. 6.18(b). Only one quadrant (i.e. 90 degrees) of the

lamp surface was revolved and the detailed editing was done on this part. At a later stage, by mirroring this quadrant,

the full symmetric model was created. Figure 6.18(c) shows the traced portion, highlighted in red. In this case both

117

zero-point and thick-brush tracing were used. Figure 6.18(d) shows the same but in shaded mode. Just by looking at

both pictures, it is not easy to identify which portion of theregion is traced using which tracing option. Figure 6.18(e)

shows the surface after the unwanted selected region was removed. Figures 6.18(f) and (g) are the results of the

mirroring operation and the erection of the �nal lamp model.They are rendered in shaded and wire-frame mode

respectively to highlight the details.

Figures 6.18(h), (i), and (j) are the same quadrant of the lamp model, shown in Fig. 6.18(b) but used to create a

different design of the �nal geometry. This emphasizes thatby using the same initial surface guide geometry, several

different detailed models can be created just through the use of different tracing operations. This provides the user

�exibility to design multiple geometries from the initial base geometry in a short period of time.

The above presented surface examples use only tracing operations over disjointed surfaces. Figure 6.19 shows a

new, interesting, useful and time-saving tracing operation in the GuTS approach. The sequence of pictures in Fig. 6.19

shows the ability to trace, both zero-point and thick-brushtracing, over multiple guide shapes, as if tracing over a

single surface. In Fig. 6.19(a) three geometries - two hemispherical and one semi-cylindrical surfaces - are intersecting

each other. The dynamic intersection algorithm �nds the intersecting triangles and intersecting curves between these

geometries in real-time. Once these multiple geometries are made into guide geometries for tracing, these intersecting

curves are inserted into the geometries. Figure 6.19(a) shows the geometries in wire-frame rendering with two regions

traced and selected while the third region is just traced. Figure 6.19(b) displays after the third region on the right and

the fourth region on the left (not visible in picture), and a thick-brush tracing in the middle is inserted over multiple

geometries. The selected regions of the surfaces are shown in red. After the unwanted selected surface regions and

other side of the hemispherical surfaces are removed, the �nal geometry is shown in Fig. 6.19(c). Such a complex �nal

surface geometry is easily and directly modeled using the GuTS approach but it cannot be modeled with the same ease

using other geometric modeling programs.

Figure 6.20 shows the sequence of pictures during the creation of a cooking spatula. In this example, one extruded

and one revolved surface were used. Both these surfaces weremade into guide geometries. Then, zero-point tracing

was used to trace the desired shape of the spatula over both geometries. Figure 6.20(b) shows the stage where one

region of the surface was traced but before the second tracedcurve is inserted. Figures 6.20(c) and (d) are the result

of both surface regions being traced and inserted. They are rendered in shaded and wire-frame mode to highlight the

details of the geometry. Figure 6.20(e) shows the �nal geometry after the unwanted surface regions were removed and

mirrored to create the other half. Figure 6.20(f) shows the completed �nal geometry in wire-frame rendering mode.

This example also demonstrates the capability that multiple guide shapes can be positioned and viewed by the user

before the surface regions are traced. This allows the user to visualize partly how the �nal shape will look before the

surface regions are traced - providing the user with additional visual feedback during different stages of the modeling

process.

118

(a) the initial

input curves

(b) curves are revolved to form

one quadrant of a lamp model

(c) different parts of the

surfaces are traced using

both zero-point and thick-

brush tracing (showin in

red)

(d) same as in

Fig. 6.18(c), rendered in

shaded mode

(e) resulting surface after

the traced regions are erased

(f) mirrored the quadrant surface to

form the complete lamp model

(g) same as Fig. 6.18(f), ren-

dered in wire-frame

(h) starting with the same ini-

tial model as in Fig. 6.18(b)

(i) uses different zero-

point and thick-brush trac-

ing operations

(j) shows the resulting totally

different lamp model

Figure 6.18 Lamp models

119

(a) shows multiple geometries and two regions are

traced and inserted into the semi-cylindrical surface

(b) shows additional two regions traced on the hemi-

spherical surfaces and a thick-brush traced over all

three surfaces in the middle (shown in red)

(c) shows the resulting complex abstract surface after all

the traced regions are erased

Figure 6.19 Abstract model - Designed through multiple guide shapes

120

(a) handle is

traced over one

surface

(b) handle is inserted into a surface and the bot-

tom part of the spatula is drawn over the second

surface

(c) after both handle and bottom part of

the spatula inserted into both the surfaces

(shown in red)

(d) same as

Fig. 6.20(c)

in wire-frame

rendering

(e) Unwanted surface regions are erased

and mirrored to form the complete spatula

model

(f) completed spatula model rendered in wire-frame mode

Figure 6.20 Spatula (cooking utensil) model

121

Figure 6.21 shows the sequence of pictures in creating a car bumper model. Figure 6.21(a) shows the curves

that created the surfaces shown in Fig. 6.21(b). Since this is a symmetric object, only half of the �nal geometry

was designed and later the other half was mirrored. Figure 6.21(c) shows the portions of the surfaces were traced.

As mentioned earlier, it is dif�cult to identify which type of tracing operation was performed on these surfaces.

Figure 6.21(d) shows the remains after the unwanted portions of the surfaces were removed. Figures 6.21(e) and (f)

show the model after the other half was mirrored, in wire-frame and shaded rendering respectively. Figure 6.21(h)

shows the complete geometry after the top portion was extruded. Figures 6.21(g) and (i) are the same as the models

shown in Fig. 6.21(f) and (h), but only in red.

Figure 6.22 shows the sequence of pictures in creating a car wheel. Figure 6.22(a) shows the curve used to create

the surfaces shown in Fig. 6.22(b). Figure 6.22(b) shows thetraced region in red. Since this is a symmetric object,

only one quadrant of the �nal geometry was designed and laterthe remaining portion was mirrored. Figure 6.22(c)

shows the model after the traced portions were removed. Figure 6.22(d) was the result of one mirror operation while

Fig. 6.22(e) shows all four quadrants were mirrored. Figures 6.22(f) and (g) display the completed wheel model in

wire-frame and shaded rendering respectively.

The GuTS system also edits models that are designed in other existing (commercial or non-commercial) modeling

systems through a set of standard �le formats. Figure 6.23(a) shows the head model that was imported into the GuTS

system as a standard mesh �le format called `object �le format (off)'. In Figure 6.23(b) the ears were removed and a

new portion of the head was traced and selected. Figures 6.23(c) and (d) show the �nal face mask after the selected

surface region was removed and rendered in shaded and wire-frame rendering mode.

122

(a) initial input curves (b) curves are revolved and

extruded to form half of the

bumper model

(c) additional features are

traced over the surface

(shown in red)

(d) traced regions are

erased from the surface

geometries

(e) surfaces are mirrored to create other

half of the bumper model

(f) resulting bumper model rendered in shaded

mode

(g) same as in Fig. 6.21(f) shown in

red at a slightly different angle

(h) mid top portion of the bumper is extended

to form the complete bumber model

(i) same as in Fig. 6.21(h) rendered in red at a

slightly different angle

Figure 6.21 Car bumper model

123

(a) initial input curve (b) input curves are revolved one quandrant and different

regions are traced using zero-point and thick-brush tracing

(shown in red)

(c) traced regions are erased from the surface (d) mirrored once to form half of the wheel

(e) mirrored again to form the full wheel

model

(f) completed full wheel model in wire-frame

rendering

(g) completed full wheel model ren-

dered in shaded mode

Figure 6.22 Car wheel model

124

(a) imported surface model that

was modeled in another model-

ing system

(b) thick-brush tracing was done to

select a region of the model (shown

in red)

(c) traced region is erased from the

surface geometry

(d) resulting �nal geometry ren-

dered in wire-frame mode

Figure 6.23 Face mask model

125

Chapter 7

Conclusions

In this chapter, we summarize the GuTS modeling approach, the GuTS system and the contributions of this re-

search. This will be followed by a discussion of the general limitations of the GuTS approach and our implementation

as well as opportunities for future research.

Freeform modeling is a core part of geometric modeling, but freeform models are dif�cult to specify and manipu-

late interactively. Hence, working with freeform curves and surfaces precisely is challenging. To manipulate complex

freeform geometries precisely with an interactive system,the user must communicate to the system how the vertices,

edges, faces, curves, surfaces, and the entire geometries are manipulated in real-time dynamically. Modeling complex

curves and surfaces using an interactive system is dif�cult, since it requires the user to have knowledge of geometric

representation and the system's user interface. This is duein part to the limitations posed by conventional modeling

approaches and partly due to the limited set of input and output (I/O) devices (such as the keyboard, 2D mouse and

monitor).

In this research, we addressed these issues in order to overcome the above dif�culties in designing complex curves

and surfaces. We presented a novel approach called “Guided Trace and Stitch” (GuTS) modeling using multimodal

interaction. The GuTS approach addresses an important issue in designing complex curves and surfaces: to provide

precision, �uency, and rapidity at the same time. In the GuTSapproach, complex pieces of curves and surfaces are

created by guided tracing and stitching together pieces of geometries traced from guide shapes. The GuTS interface

provides the �uency of a pen-based sketching interface, as in paper-pencil drawing, and at the same time provides

precision through guiding, automated snapping, and stitching mechanisms. Productivity is also achieved when com-

munication and interaction between the system and the user is direct, �uent and rapid.

Precise segments of geometries are created by tracing alongguide shapes. Automated snapping and other interac-

tion mechanisms for precisely placing the curves and surfaces permit precise and rapid manipulation of geometries.

Precision is achieved through the use of guide geometries and automated snapping mechanisms.

Multimodal user interaction (such as two handed input, 3-dimensional (3D) mouse input, pen and data-tablet for

hand-eye coordination, voice input, and synthesized speech output) addresses the user interface challenges raised in

the GuTS approach. Using these multiple modes, the user interface is designed effectively to provide the user with a

�uent and direct approach of interaction.

126

Rapidity is achieved through snapping mechanisms and the multimodal user interface. The automated snapping

mechanisms de�ne precise conditions with minimal input from the user, eliminating additional input and time. Using

multiple input and output modes simultaneously and effective coordination provides rapid interaction.

7.1 Review of Contributions

The primary contributions of this research are:

7.1.1 Novel Approach

This research introduces a novel approach called “Guided Trace and Stitch” (GuTS) modeling using multimodal

interaction to model freeform geometries precisely, �uently and rapidly. While reviewing several related modeling

systems and research, we found no other system exists that does similar tasks (for curve and surface modeling) with

a multimodal user interface. In the GuTS approach geometries are created using three operations: guided tracing,

automated snapping, and stitching. Precision is achieved through guided tracing operations (for both curves and sur-

faces) and automated snapping mechanisms (for curves). Since the tracing operation is direct and �uent, it eliminates

the need for the user to be knowledgeable of the underlying geometric representation. The GuTS approach also cre-

ates complex geometries by tracing over multiple guide geometries. Secondary contributions of the GuTS approach

include: (a) new snapping mechanisms, such as pivot snapping, slide snapping, and two-point snapping, and (b) auto-

mated stitching mechanisms for tracing over curves and surfaces that allow pieces of curves and surfaces to be traced

and stitched together to form complex shapes transparently.

In curve modeling, the curves are rapidly aligned and positioned precisely using several snapping mechanisms.

Some of the snapping mechanisms, such as absolute positioning, point-to-point snapping and the gravity �eld, are

introduced earlier [93, 25, 24, 23]. In this research we introduced `whole object snapping', that includes different

snapping mechanisms, such as one-point snap/pivotal snap,slide snap, and two-point snap/�xed snap, which help

the user interactively position the curves precisely and rapidly during the modeling process. One-point/pivotal snap

creates a (pivotal) point contact and the curves orient themselves about this point. Slide snap creates a point contact

and then further slides the curves along another curve. Two-point snap/�xed snap connects a curve between two points

of another curve or two points of two different curves. Basedon the relative positioning of the geometries, these

snap mechanisms are automatically activated and allow the user to rapidly de�ne precise relationships between the

geometries.

The automated stitching and continuity detection feature -based upon the alignment and orientation of the geome-

tries - automatically stitches the curves together during the tracing operation. The continuity between multiple guide

curves is automatically detected and passed to the traced geometry. This automated continuity detection achieves

differentC0, C1, andC2 continuities automatically, depending upon the properties of the guide curves and snapping

conditions. This feature eliminates the user's need to explicitly specify the continuities at every stitching region and

127

allows the user to trace over multiple guides rapidly in order to form complex geometries. In the GuTS approach, two

types of tracing methods are used. They are zero-point tracing and thick-brush tracing over a triangulated mesh struc-

ture. Zero-point tracing is used to insert a curve that is drawn on the triangulated mesh structure and splits the surface

into regions. Thick-brush tracing selects a region of surface by tracing the path over a surface with a user-speci�ed

brush-thickness.

7.1.2 Multimodal User Interaction

The GuTS modeling approach created unique challenges for user interface. To address these issues we introduced a

multimodal user interaction that not only provided a directapproach of manipulation and interaction but also enabled

rapid design through multiple parallel uninterrupted I/O modes. This multimodal user interaction brings out the

potential of the GuTS approach by expanding and exploring the way a user manipulates curves and surfaces. Compared

with other modeling systems that use multimodal interface for creating approximate abstract geometries, the GuTS

approach focused on achieving precision, �uency, and rapidity at the same time. In this research we also demonstrated

how multimodal user interaction was uniquely integrated with the GuTS modeling approach.

7.1.3 Implementation

As part of this research, we designed and developed an interactive prototype system, called the GuTS system, that

demonstrates the GuTS approach with multimodal user interaction. The GuTS system highlighted different features of

the GuTS approach. We also presented several examples of curve and surface models that are created using the GuTS

system. These examples from the prototype system also proved the feasibility of this novel modeling approach in real-

world applications. We implemented the GuTS system using multiple geometric representations, i.e. interpolation

subdivision and Bezier representations for curves, and tessellated mesh representation for surface geometries. By

using multiple geometric representations in the GuTS system, we demonstrated that the GuTS approach can be applied

to different geometric representations; the underlying geometric representation is transparent to the user; and the same

multimodal user interface can be used regardless of the underlying geometric representation.

7.2 Pros & Cons of the GuTS Approach

In this section, we highlight the key pros and cons of the GuTSapproach.

7.2.1 Pros

The pros of the GuTS approach are:

� Precision, �uency, and rapidity is achieved at the same timein freeform geometric modeling.

� Suitable for modeling complex curves and surfaces that can be created from one or multiple geometries.

128

� Helps the user to visualize the resulting geometry before creating them - i.e. by placing the guide shapes in

place, the user will know exactly how the resulting geometrywill look, even before any tracing operation is

done.

� WYSIWYG (What You See is What You Get) modeling approach.

� Does not require the user to be knowledgeable of the underlying geometric representation.

� Independent of the underlying geometric representation - providing an uni�ed front-end user interface to the

user. This approach can be implemented using different geometric representations.

� Makes use of the user's natural multimodal interaction behavior - providing direct coordinated multimodal user

interface.

7.2.2 Cons

The cons of the GuTS approach are:

� Not ef�cient when modeling certain types of geometries - such as, when most of the modeled geometries involve

lines, polylines and planar faces.

� Not suitable for modeling geometries that cannot be represented as guide shapes.

� Large number of geometries in the modeling session will interfere with the automated snapping mechanisms.

This can be addressed using different methods, such as layering concepts discussed in section 7.3.1.

� Since the geometric tracing and stitching are partly continuous processes, implementing editing features (such

as maintaining history of modi�cations, undo feature, etc.) would become dif�cult.

� While the GuTS approach can be implemented using a conventional keyboard, 2D mouse and monitor interface,

it will make the user interface indirect and complex, makingit dif�cult to perform the required operations.

� For interpolation subdivision curves and surfaces, precision is limited by the sampling of the input guide ge-

ometries. This is mainly a limitation of the implementation, rather than the GuTS approach itself.

7.3 Limitations and Future Work

In this section, we discuss the limitations in detail, and discuss its potential solutions and future work.

129

7.3.1 Large Number of Curves

One of the insights from the observation of the implemented curve modeling program is an issue with the snapping

mechanisms. When a large number of curves exist in a session, guide shapes often stick to unwanted curves that disrupt

the modeling process. This created unwanted snaps and forced the user to pull away these snaps until the desired snap

point or curve was reached. This can be avoided by using some of the following approaches. As mentioned in the

earlier chapter, `skitters and jacks' can be used, i.e. by explicitly specifying the points that are for snapping, or by

making only a few active curves so that only these curves are considered for the snapping operation. Another way is

to use layers in which a small set of curves in the same group are put in a layer. By having multiple layers, at any

given time the user will be interacting with a limited set of curves. Though these methods are not implemented in our

current system, they are theoretically well-de�ned and caneasily be implemented in practice to handle a large number

of curves.

7.3.2 History of Modi�cations and Undo Feature

In the current implementation of the GuTS system, there is nomechanism to keep track of the sequence of opera-

tions that are performed on geometries. This prevents rolling back (`undo') to the previous step in the design process,

as well as changing or modifying the previously performed geometric operations. While discrete operations can be

easily tracked and task history can be easily maintained, inthe GuTS approach several tasks (such as tracing and

stitching) are performed simultaneously and continuously, making a history list quite tricky. In addition, with the

multimodal user interface, tracking all the inputs from thedifferent devices adds another layer of complexity. In this

research we did not address this issue but it would be interesting research to pursue in the future.

7.3.3 Subdivision Schemes for the Surface Mesh

Curve modeling is implemented using the interpolation subdivision scheme. This allows the user to re�ne the

curves and to change the level of detail of the curves dynamically and interactively. The implementation of surface

modeling does not use any subdivision schemes. This prevents controlling the level-of-detail of the surface mesh

dynamically. As presented in Chapter 4, the modi�ed butter�y interpolation subdivision scheme can be used to sub-

divide the surface meshes dynamically and interactively. Also, the ability to dynamically control the level-of-detail,

both locally and globally, will also assist in new ways to perform other geometric operations, such as tracing, stitch-

ing, smoothing, etc., in the GuTS modeling approach. While the algorithms will be complex to construct, it will

considerably reduce the complexity and increase the �exibility of the geometric operations.

130

7.3.4 Extending Surface Stitching Operations

In our current implementation, the surfaces are stitched along the intersection curve. This is explicitly done to

eliminate the introduction of new geometric shapes to the �nal geometry that are not from the guide shapes or the

initial input geometries. This restriction connects the surfaces easily without any changes along the surface intersection

boundaries. This limitation poses some restrictions, suchas two surfaces can be stitched only when the surface patches

completely intersect. When these surfaces do not intersect,the current implementation does not do any stitching

operation. This can be overcome by implementing surface lofting algorithms. Through lofting operations, a new

surface patch is created that connects the two input surfaces along the boundaries. This will stitch two or more surface

patches by bringing them closer such that an intermediate surface is created. Then, the two surfaces can be stitched

together. It will be the same as in curve modeling: when two curves are brought closer, they are snapped and stitched

together to form the desired connectivity.

7.4 Summary

In this research we presented a novel approach called the Guided Trace and Stitch (GuTS) modeling approach

using multimodal user interaction for freeform geometric modeling that simultaneously provides precision, �uency

and rapidity. In the GuTS approach, complex curves and surfaces are created by stitching pieces of geometries that

are traced from guide shapes. The GuTS interface provides the �uency of a sketching interface as in paper-pencil

drawing and at the same time provides precision through automated guiding and stitching mechanisms. Multiple I/O

modes imitate natural human interaction and design processes while providing the advantage of controlling the shapes

digitally.

131

LIST OF REFERENCES

[1] Accuracy and precision. (n.d.). wikipedia, the free encyclopedia. retrieved january, 2007, from reference.com
website:http://www.reference.com/browse/wiki/Accuracy_and_p recision .

[2] Ascension, january 2007,http://www.ascension-tech.com/ .

[3] Directx's direct3d, january 2007,http://www.microsoft.com/windows/directx/default.ms px.

[4] Logitech 3d mouse, january 2007,http://www.3dconnexion.com/ .

[5] Multimodal. (n.d.). dictionary.com unabridged (v 1.1). retrieved january, 2007, from dictionary.com website:
http://dictionary.reference.com/browse/multimodal .

[6] Multimodal. (n.d.) wikipedia.org. (2005). retrieved january, 2007 from http://encyclopedia.
thefreedictionary.com/multimodal .

[7] Phantom haptic device, january 2007,http://www.sensable.com/ .

[8] Polhemus, january 2007,http://www.polhemus.com/ .

[9] Precision. (n.d.). wikipedia, the free encyclopedia. retrieved january, 2007, from reference.com website:http:
//www.reference.com/browse/wiki/Precision .

[10] United states department of health and human services,january 2007,http://www.hhs.gov/ohrp/policy/
index.html .

[11] Uw institutional review board (irb), january 2007,http://info.gradsch.wisc.edu/research/
compliance/humansubjects/index.htm .

[12] R. Arangarasan and R. Gadh. Geometric modeling and collaborative design in a multi-modal, multi-sensory
virtual environment. InProceedings of the ASME 2000 IDETC/CIE Conference, Maryland, USA, September
10-13 2000.

[13] R. Arangarasan and G. N. Phillips Jr. Modular approach of multimodal integration in a virtual environment. In
IEEE Fourth International Conference on Multimodal Interfaces, USA, October 14-16 2002.

[14] R. Arsenault and C. Ware. Eye-hand co-ordination with force feedback. InACM Computer-Human Interaction
Letters (CHI 1-6), volume 2, pages 408–414, April 2000.

[15] J. Arvo and K. Novins. Fluid sketches: Continuous recognition and morphing of simple hand-drawn shapes. In
Proceedings of the 13th Annual ACM Symphosium on User Interface Software and Technology, pages 73–80,
San Diego, CA, USA, November 6-8 2000.

132

[16] P. Asente and M. Schuster. Dynamic planar map lllustration. In SIGGRAPH '05: ACM SIGGRAPH 2005
Sketches, page 92, New York, NY, USA, 2005. ACM Press.

[17] N. Badler, K. Manoochehri, and D. Baraff. Multi-dimensional input techniques and articulated �gure position-
ing by multiple constraints. InProceedings of Workshop on Interactive 3D Graphics, pages 151–169. ACM,
1986.

[18] R. Balakrishnan, G. Fitzmaurice, G. Kurtenbach, and W.Buxton. Digital tape drawing. InProceedings of the
12th Annual ACM Symposium on User Interface Software and Technology, pages 161–169, Asheville, USA,
November 7-10 1999.

[19] R. Balakrishnan, G. Fitzmaurice, G. Kurtenbach, and K.Singh. Exploring interactive curve and surface manip-
ulation using a bend and twist sensitive input strip. InProceedings of Symposium on Interactive 3D Graphics,
pages 111–118, 1999.

[20] T. Baudel. A mark-based interaction paradigm for free-hand drawing. InProceedings of the ACM symposium
on User Interface Software and Technology, pages 185–192, Marina del Rey, CA USA, November 2-4 1994.

[21] P. Baudelaire and M. Gangnet. Planar maps: An interaction paradigm for graphic design. InProceedings of the
SIGCHI Conference on Wings for the Mind, pages 313–318, Austin, TX, USA, April 30 - May 4 1989.

[22] P. Bezier. Mathematical and practical possibilities of unisurf. In R. Barnhill and R. Riesenfeld, editors,Com-
puter Aided Geometric Design, pages 127–152, New York, USA, 1974. Academic Press.

[23] E. Bier. Snap-dragging in three dimensions. InProceedings of Symposium on Interactive 3D Graphics, pages
193–204. ACM, 1990.

[24] E. A. Bier. Skitters and jacks: Interactive 3d positioning tools. InProceedings of Workshop on Interactive 3D
Graphics, pages 183–196, Chapel Hill, NC, USA, October 23-24 1986.

[25] E. A. Bier and M. C. Stone. Snap-dragging. InProceedings of the 13th Annual Conference on Computer
Graphics, volume 20, pages 233–240, Dallas, TX, USA, August 18-22 1986.

[26] H. Biermann, D. Kristjansson, and D. Zorin. Approximate boolean operations on free-form solids. InSIG-
GRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques,
pages 185–194, New York, NY, USA, 2001. ACM Press.

[27] H. Biermann, I. Martin, F. Bernardini, and D. Zorin. Cut-and-paste editing of multiresolution surfaces. In
SIGGRAPH '02: Proceedings of the 29th annual conference on Computer graphics and interactive techniques,
pages 312–321, New York, NY, USA, 2002. ACM Press.

[28] J. R. Bill and S. K. Lodha. Computer sculpting of polygonal models using virtual tools. InTechnical notes:
UCSC-CRL-94-27, Computer Engineering & Information Sciences, Santa Cruz, CA, USA, July 22 1994. Uni-
versity of California.

[29] M. Billinghurst, S. Baldis, L. Matheson, and M. Phillips. 3d pallette, a virtual reality content creation tool. In
Proceedings of Virtual Reality and Software Technology, (VRST 97), pages 155–156. ACM, 1997.

[30] M. M. Blattner and E. P. Glinert. Multimodal integration. In IEEE Multimedia, volume 3, pages 14–24, 1996.

[31] W. Boehm and A. Mller. On de casteljau's algorithm. InComputer Aided Geometric Design, volume 16, pages
587–605. Elsevier Science, August 1999.

133

[32] P. Borrel and A. Rappoport. Simple constrained deformations for geometric modeling and interactive design.
In ACM Transactions on Graphics, volume 13, pages 137–155, April 1994.

[33] M. Bourguet and A. Ando. Synchronization of speech and hand gestures during multimodal human-computer
interaction. InACM Computer-Human Interaction (CHI 18-23), pages 241–242, 1998.

[34] D. Bowman, D. Johnson, and L. Hodges. Testbed evaluation of ve interaction techniques. InProceedings of
Virtual Reality and Software Technology (VRST '99), pages 26–33. ACM, 1999.

[35] F. Brooks. Grasping reality through illusion: Interactive graphics serving science. InProceedings of CHI'88,
pages 1–11. ACM.

[36] W. Buxton and B. Myers. A study in two-handed input. InProceedings of CHI'86, pages 321–326. ACM.

[37] E. Catmull and J. Clark. Recursively generated b-spline surfaces on arbitrary topological meshes. InComputer
Aided Design, volume 10, pages 350–355, 1978.

[38] J. M. Cohen, L. Markosian, R.C. Zeleznik, J.H. Hughes, and R. Barzel. An interface for sketching 3d curves.
In Proceedings of 1999 Symposium on Interactive 3D Graphics, pages 17–21. ACM SIGGRAPH, 1999.

[39] P. Cohen, D. McGee, S. Oviatt, L. Wu, J. Clow, R. King, S. Julier, and Rosenblum. Multimodal interaction for
2d and 3d environments. InIEEE Computer Graphics and Applications, volume 19, pages 10–13, July-August
1999.

[40] L. D. Cutler, B. Frohlich, and P. Hanrahan. Two-handed direct manipulation on the responsive workbench. In
Symposium on Interactive 3D Graphics, pages 107–114, 1997.

[41] M. F. Deering. Holosketch: A virtual reality sketching/animation tool. InACM Transactions on Computer-
Human Interaction, volume 2, pages 220–238, 1995.

[42] D. Doo and M. Sabin. Analysis of the behaviour of recursive division surfaces near extraordinary points. In
Computer Aided Design, volume 10, pages 356–360, 1978.

[43] N. Dyn, Levin. D., and J. A. Greogory. A butter�y subdivision scheme for surface interpolation with tension
control. InACM Transactions on Graphics, volume 9, pages 160–169, 1990.

[44] N. Dyn, D. Levin, and J. A. Gregory. A 4-point interpolatory subdivision scheme for curve design. InComputer
Aided Geometric Design, volume 4, pages 257–268, 1987.

[45] G. Farin and D. Hansford.The Essentials of CAGD. A K Peters, Ltd., Natic, MA, 2000. ISBN 1-56881-123-3.

[46] J. D. Foley, A. van Dam, K. S. Feiner, and J. F. Hughes.Computer Graphics - Principles and Practice.
Addison-Wesley, second edition, 1990. ISBN 0-201-12110-7.

[47] S. Gottschalk, M. C. Lin, and D. Manocha. Obb-tree: A hierarchical structure for rapid interference detection.
Technical report, University of N. Carolina, Department ofComputer Science, Chapel Hill, 1996. Technical
report TR96-013. Proceedings of ACM Siggraph'96.

[48] M. A. Grasso, D. S. Ebert, and T. W. Finin. The integrality of speech in multimodal interfaces. InACM
Transactions on Computer-Human Interaction, volume 5, pages 308–325, December 1998.

[49] T. Grossman, D. Wigdor, and R. Balakrishnan. Multi-�nger gestural interaction with 3d volumetric displays.
In SIGGRAPH '05: ACM SIGGRAPH 2005 Papers, pages 931–931, New York, NY, USA, 2005. ACM Press.

134

[50] J. Y. Han. Low-cost multi-touch sensing through frustrated total internal re�ection. InUIST '05: Proceedings
of the 18th annual ACM symposium on User interface software and technology, pages 115–118, New York, NY,
USA, 2005. ACM Press.

[51] M. D. Hearn and P. Baker.Computer Graphics - C Version. Prentice Hall, second edition, 1997. ISBN 0-13-
530924-7.

[52] K. Hinckley, R. Pausch, J. Goble, and N. Kassell. A survey of design issues in spatial input. InProceedings of
User Interface Software and Technology, pages 213–222. ACM, 1994.

[53] K. Hinckley, R. Pausch, D. Prof�tt, J. Patten, and N. Kassell. Cooperative bimanual action. InProceedings of
CHI'97, pages 27–34. ACM, 1997.

[54] K. Hinckley and M. Sinclair. Touch-sensing input devices. InACM Computer-Human Interaction (CHI 15-20),
pages 223–230, May 1999.

[55] K. Hinckley, J. Tullio, and Pausch R. Usability analysis of 3d rotation techniques. InProceedings of User
Interface Software and Technology, pages 1–10, 1997.

[56] M. Honda, T. Igarashi, H. Tanaka, and S. Sakai. Integrated manipulation: Context-aware manipulation of 2d
diagrams. InProceedings of the 12th Annual ACM Symposium on User Interface Software and Technology,
pages 159–160, Asheville, USA, November 7-10 1999.

[57] S. Houde. Iterative design of an interface for easy 3-d direct manipulation. InProceedings of CHI'92, pages
135–142. ACM, 1992.

[58] T. Hudson, M. Lin, J. Cohen, S. Gottschalk, and D. Manocha. V-collide: Accelerated collision detection for
vrml. In The Proceedings of VRML97, ACM Press, pages 119–125, Monterey, CA, USA, February 24-26 1997.

[59] T. Igarashi, S. Kawachiya, H. Tanaka, and S. Matsuoka. Pegasus: A drawing system for rapid geometric design.
In Proceedings of the Conference on CHI 98 Summary: Human Factors in Computing Systems, pages 24–25,
Los Angeles, CA, USA, April 18-23 1998.

[60] T. Igarashi, S. Matsuoka, S. Kawachiya, and H. Tanaka. Interactive beauti�cation: A technique for rapid geo-
metric design. InProceedings of the 10th Annual ACM Symposium on User Interface Software and Technology,
pages 105–114, Banff, Canada, October 14-17 1997.

[61] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A sketching interface for 3d freeform design. InACM
SIGGRAPH 99 Conference Proceedings, pages 409–416, 1999.

[62] T. Ijiri, Igarashi T., S. Takahashi, and E. Shibayama. Sketch interface for 3d modeling of �owers. InSIG-
GRAPH '04: ACM SIGGRAPH 2004 Sketches, page 6, New York, NY, USA, 2004. ACM Press.

[63] O. A. Karpenko and J. F. Hughes. Smoothsketch: 3d free-form shapes from complex sketches. InSIGGRAPH
'06: ACM SIGGRAPH 2006 Papers, pages 589–598, New York, NY, USA, 2006. ACM Press.

[64] Y. Kho and M. Garland. Sketching mesh deformations. InSIGGRAPH '05: ACM SIGGRAPH 2005 Papers,
pages 934–934, New York, NY, USA, 2005. ACM Press.

[65] L. Kobbelt. Interpolatory subdivision on open quadrilateral nets with arbitrary topology. InProceedings of
Eurographics 96, Computer Graphics Forum, pages 409–420, 1996.

[66] K. Korida, H. Nishino, and K. Utsumiya. An interactive 3d interface for a virtual ceramic art work environment.
In Proceedings of Virtual Systems and Multimedia (VSMM '97) Conference, pages 227–234, 1997.

135

[67] F. Kuijt. Convexity preserving Interpolation Stationary nonlinearsubdivision and splines. PhD thesis, Univer-
sity of Twente, Faculty of Applied Mathematics, 1998.

[68] Jr. J. J. LaViola. Welcome and introduction. InSIGGRAPH '06: ACM SIGGRAPH 2006 Courses, page 1, New
York, NY, USA, 2006. ACM Press.

[69] A. Leganchuk, S. Zhai, and W. Buxton. Manual and cognitive bene�ts of two-handed input: An experimental
study. InACM Transactions on Computer-Human Interaction, volume 5, pages 326–359, December 1998.

[70] I. Llamas, B. Kim, J. Gargus, J. Rossignac, and C. D. Shaw. Twister: a space-warp operator for the two-handed
editing of 3d shapes. InSIGGRAPH '03: ACM SIGGRAPH 2003 Papers, pages 663–668, New York, NY, USA,
2003. ACM Press.

[71] C. Loop. Smooth subdivision surfaces based on triangles. Master's thesis, University of Utah, Department of
Mathematics, 1987.

[72] L. Markosian, J. M. Cohen, T. Crulli, and J. Hughes. Skin: A constructive approach to modeling free-form
shapes. InSIGGRAPH 99 Conference Proceedings, pages 393–400, 1999.

[73] Autodesk Maya. http://usa.autodesk.com/adsk/servlet/index?siteID=1 23112&id=7635018,
September 22 2006.

[74] S. Mizuno, D. Kobayashi, M. Okada, J. Toriwaki, and S. Yamamoto. Virtual sculpting with a pressure sensitive
pen. InSIGGRAPH '03: ACM SIGGRAPH 2003 Sketches & Applications, pages 1–1, New York, NY, USA,
2003. ACM Press.

[75] A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or. A sketch-based interface for detail-preserving mesh editing.
In SIGGRAPH '05: ACM SIGGRAPH 2005 Papers, pages 1142–1147, New York, NY, USA, 2005. ACM Press.

[76] L. Nigay and J. Coutaz. A design space for multimodal systems - concurrent processing and data fusion.
In INTERCHI '93 - Conference on Human Factors in Computing Systems, pages 172–178. Addison Wesley,
Amsterdam, 1993.

[77] H. Nishino, M. Fushimi, K. Utsumiya, and K. Korida. A virtual environment for modeling 3d objects through
spatial interaction. InSystems, Man, and Cybernetics, IEEE SMC '99 Conference Proceedings, volume 6,
pages 81–86, 1999.

[78] H. Nishino, D. Nariman, K. Utsumiya, and K. Korida. Making 3d objects through bimanual actions. InSystems,
Man, and Cybernetics, IEEE International Conference, volume 4, pages 3590–3595, 1998.

[79] T. Nishita. Applications of bezier clipping method andtheir java applets. InProceedings of Spring conference
on computer graphics, pages 3–15, 1998.

[80] J. Oh and W. Stuerzlinger. Sesame: 3d conceptual designsystem. InSIGGRAPH '04: ACM SIGGRAPH 2004
Posters, page 39, New York, NY, USA, 2004. ACM Press.

[81] J. Pierce, B. Stearns, and R. Pausch. Two handed manipulation of voodoo dolls in virtual environments. In
Proceedings of Symposium on Interactive 3D Graphics, pages 141–145, 1999.

[82] J. Rekimoto and E. Sciammarella. Toolstone: Effectiveuse of the physical manipulation vocabularies of input
devices. InProceedings of User Interface Software and Technology, volume 2, pages 109–117, 2000.

[83] D. Rubine. Specifying gestures by example. InACM SIGGRAPH Computer Graphics, volume 25, pages
329–337, July 1991.

136

[84] D. Rubine. Combining gestures and direct manipulation. In Conference proceedings on Human factors in
computing systems, pages 659–660, May 3-7 1992.

[85] E. Sachs, A. Roberts, and D. Stoops. 3-draw: A tool for designing 3d shapes. InIEEE Computer Graphics and
Applications, volume 11, pages 18–26, 1991.

[86] S. Schkolne, M. Pruett, and P. Schroder. Surface drawing: Creating organic 3d shapes with the hand and
tangible tools. InCHI 2001, 2001.

[87] R. Schmidt, B. Wyvill, M. C. Sousa, and J. A. Jorge. Shapeshop: sketch-based solid modeling with blobtrees.
In SIGGRAPH '06: ACM SIGGRAPH 2006 Courses, page 14, New York, NY, USA, 2006. ACM Press.

[88] L. Schomaker, J. Nijtmans, A. Camurri, F. Lavagetto, P.Morasso, C. Benot, T. Guiard-Marigny, B. Le Goff,
J. Robert-Ribes, A. Adjoudani, I. Defe, S. Mnch, K. Hartung,and J. Blauert. A taxonomy of multimodal
interaction in the human information processing system - a report of the esprit project 8579. Technical report,
February 1995.http://hwr.nici.ru.nl/ ~miami/taxonomy/taxonomy.html .

[89] T. W. Sederberg and T. Nishita. Curve intersection using bezier clipping. InCAD, volume 22, pages 337–345,
1990.

[90] W. T. Sederberg and R. S. Parry. Free-form deformation of solid geometric models. InACM SIGGRAPH 1986,
volume 20, pages 151–160, August 18-22 1986.

[91] K. Singh. Interactive curve design using digital french curves. InProceedings of the 1999 Symposium on
Interactive 3D Graphics, pages 23–30, Atlanta, GA, USA, April 26-29 1999.

[92] A. Stork, O. Schimpke, and R. D. Amicis. Sketching free-forms in seme-immersive virtual environments. In
Proceedings of DETC'00, 2000 ASME Design Engineering Technical Conferences and Computers and Infor-
mation in Engineering Conference, pages 5–7, Baltimore, MD, USA, September 10-13 2000.

[93] I. E. Sutherland. I. e. sketchpad - a man-machine graphical communication system. InProceedings of the
Spring Joint Computer Conference, Detroit, MI, USA, 1963.

[94] D. Terzopoulos and H. Qin. Dynamic nurbs with geometricconstraints for interactive sculpting. 13(2):103–
136, April 1994.

[95] N. Watanabe and T. Igarashi. A sketching interface for terrain modeling. InSIGGRAPH '04: ACM SIGGRAPH
2004 Posters, page 73, New York, NY, USA, 2004. ACM Press.

[96] A. Watt. 3D Computer Graphics. Addison-Wesley, third edition, 2000. ISBN 0-201-39855-9.

[97] Wikipedia. Fluency — wikipedia, the free encyclopedia, 2007. [Online; accessed 28-March-2007]http:
//en.wikipedia.org/w/index.php?title=Fluency&oldid= 116179674.

[98] Wikipedia. Mode (computer interface) — wikipedia, thefree encyclopedia, 2007. [On-
line; accessed 29-March-2007]http://en.wikipedia.org/w/index.php?title=Mode_%28c omputer_
interface%29&oldid=111636206 .

[99] C. Yang, D. Sharon, and M. van de Panne. Sketch-based modeling of parameterized objects. InSIGGRAPH
'05: ACM SIGGRAPH 2005 Sketches, page 89, New York, NY, USA, 2005. ACM Press.

[100] R. C. Zeleznik, K. P. Herndon, and J. F. Hughes. Sketch:An interface for sketching 3d scenes. InComputer
Graphics Proceedings (SIGGRAPH 1996), pages 163–170, 1996.

137

[101] S. Zhai. User performance in relation to 3d input device design. InComputer Graphics, volume 32, pages
50–54, November 1998.

[102] S. Zhai and P. Milgram. Quantifying coordination in multiple dof movement and its application to evaluating
6dof input devices. InProceedings of Computer-Human Interaction, pages 320–327, Los Angeles, CA, USA,
April 18-23 1998.

[103] S. Zhai, P. Milgram, and W. Buxton. The in�uence of muscle groups on performance of multiple degree-of-
freedom input. InProceedings of CHI96: ACM Conference on Human Factors in Computing Systems, pages
308–315, Vancouver, BC, Canada, April 13-18 1996.

[104] S. Zhai and J. W. Senders. Investigating coordinationin multidegree of freedom control i: Correlation analysis
in 6 dof tracking. InProceedings of 41st Annual Meeting of Human Factors and Ergonomics Society, pages
1254–1258, September 22-26 1997.

[105] S. Zhai and J. W. Senders. Investigating coordinationin multidegree of freedom control ii: Correlation analysis
in 6 dof tracking. InProceedings of 41st Annual Meeting of Human Factors and Ergonomics Society, pages
1254–1258, September 22-26 1997.

[106] D. Zorin. Stationary Subdivision and Multiresolution Surface Representations. PhD thesis, Caltech, Pasadena,
CA, 1997.

[107] D. Zorin, P. Schrder, and W. Sweldens. Interpolation subdivision for meshes with arbitrary topology. In
Computer Graphics Proceedings, (SIGGRAPH 1996), pages 189–192, 1996.

[108] M. Zwicker, M. Pauly, O. Knoll, and M. Gross. Pointshop3d: an interactive system for point-based surface
editing. ACM Trans. Graph., 21(3):322–329, 2002.

138

APPENDIX
Design and Evaluation of the GuTS System and User Interface

A.1 Introduction

In this chapter we discuss the steps involved in designing and evaluating the GuTS system's user interface. Design

and evaluation involve the following steps:

� Design goals: de�ning the goals of the study

� User analysis: identifying and describing the intented users of the system

� Task analysis: identifying and describing the essence of the tasks to be supported by the system

� Design decisions: decisions about the design of the system

� System description: Overview of the system and a prototype of the interface

� Evaluation-I: Usability inspection of the prototype system

� Evaluation-II: Usability testing of the revised system with the user's response

Figure A.1 shows the overall layout of the design and evaluation study of the GuTS system's user interface. Studies

that involve human subjects (users) require the approval ofthe UW's `Institutional Review Board' (IRB) [11] and are

Figure A.1 Design and study of the GuTS system user interface

139

monitored by United States Department of Health and Human Services [10]. In this research, due to limited resources

- shortage of time, ability to recruit a wide variety and group of test subjects, physical facility to build the experimental

setup, gathering the subject's feedback, recursively implement the feedback into the system - we decided not to perform

the actual human subjects study, but design and present the evaluation process. This procedure allowed us to think in

terms of re�ning important design aspects that would be required during the design of the GuTS system.

A.2 Goals of this Study

The goal of this study is to measure the success rate of the GuTS approach using the GuTS system to achieve

precise, �uent, and rapid modeling through an experimentaluser study.

The above goal can be divided into sub-goals and each sub-task's individual characteristics can be measured as

follows:

� Feasibility - The GuTS system can be used to model freeform curves and surfaces

� Guided Trace and Stitch Paradigm - Eliminates the need to possess a complex knowledge of geometric modeling

and provides a WYSIWYG user interface

� Pen-based input - Allows for easy, direct, and �uent tracingoperation

� 3D Mouse input - Eliminates mapping between 2D and 3D input, and provides direct manipulation in 3D

� Speech input - Allows the user to input without interruptingcurrent tasks and decreases `mode switching'

� Auditory output - Eliminates distraction of the user's visual attention from the current focus and acts as a guiding

mechanism

� Snapping mechanisms - Provides rapid alignment of geometries precisely and decreases error produced by

imprecise user input

� Two-handed input - Increases productivity (compared to uni-manual input) and mimics the real-world drafting

process with two-hands

� Visual data tablet - Provides better hand-eye coordination(compared to the regular 2D mouse and monitor setup)

and mimics real-world paper-pencil drafting

� Multimodal user interface - Eliminates mode switching and allows users to perform multiple coordinated tasks

simultaneously

140

A.3 User Analysis

User analysis includes the de�nition of the target audience. Some of the key parameters that need to be considered

are:

� Physical characteristics (age, sex, nationality or ethnicity, demographic information, perceptual abilities, e.g.,

perceptual handicaps, motor skills and physical disabilities)

� Knowledge and experience (level of education, reading level, native language, knowledge of particular domain-

speci�c terminology, etc.)

� Computer / IT experience or knowledge (computer literacy, level of experience with similar systems, level of

experience with other systems, etc.)

� Level of experience with the task

� Psychological characteristics (attitudes, motivation touse the system, etc.)

� Quantitative characteristics (how many subjects will be needed, any need to maintain proportion of the subjects,

etc.)

� Financial and compensatory aspects (free or need to pay the subjects, credit them as part of their course, etc.)

For studying the GuTS system, the requirements of the users are:

� Physical characteristics: No restrictions on age, sex, nationality or ethnicity. Users must have no perceptual or

physical disabilities.

� Knowledge and experience: Users should have English language pro�ciency in reading and writing.

� Computer / IT experience: Users should have general knowledge of the personal computer (PC) and the Win-

dows operating system, basic knowledge in using interactive graphics application(s) - not necessarily CAD

modeling systems.

� Level of experience with the task: None

� Psychological characteristics: None

� Quantitative characteristics: Number of users will be 20 to30

� Financial aspects: Ideal candidates would be a group of users that are interested in participating in this study for

free.

141

A.4 Task Analysis

Task analysis focuses on the de�nition of the task from the user's perspective. The key parameters that need to be

considered are divided into two parts: tasks to be performedand characteristics of the tasks.

The tasks to be performed:

� Hierarchical description of activity (structure charts, GOMS models, goals and subgoals, etc.)

� Essential use cases (As `leaves' of the hierarchical tree)

� Scenarios of use (typically at least one for each essential use case, multiple for important use cases, etc.)

The tasks to be performed that are speci�c to the GuTS system are:

� Hierarchical description of activity: Depending upon the tasks, structure charts, GOMS models, and goals and

subgoals will be used.

� Essential use cases: Core tasks include tracing, stitching, manipulating geometries and viewpoint, pen-based

input, 3D mouse input for manipulation, usability of the GuTS windowing system, speech input, sound output,

and two-handed coordinated manipulation.

� Scenarios of use: Create speci�c tasks that require the userto perform each of the above tasks, so the completion

and success rate of each task can be independently measured and quanti�ed.

General description of task characteristics:

� What are the tasks (What are the exact tasks the users perform? What to observe for each task? What are the

benchmarks? What determines success or failure?)

� The frequency or timing of the task (How frequently do users perform the task? What are the time constraints

on the task? etc.)

� The complexity and dif�culty of the task (How complex is the task? How dif�cult is the task? How structured

is the task? etc.)

� The relationship of the task to other user tasks (Is system use mandatory or discretionary? How important is the

task? What is the relationship between the users and the data?etc.)

� The physical environment of task performance (Where is the task performed? What other tools does the user

have? etc.)

142

� The social, organizational and cultural environment of thetask (What kind of relationships subjects have with

other people in the workplace or on the work team? What are the effects of organizational, national, or eth-

nic/cultural differences? etc.)

� Planning for learning and breakdowns (What training will be provided? How is the task learned? What can be

said to the users without contaminating the experiment? Whatare the necessary steps needed to eliminate bias?

What happens when things go wrong? etc.)

Speci�c to the GuTS system, the general description of the task characteristics are:

� What are the tasks?

– Exact tasks users will perform include: creating complex guide shapes, tracing over the guide shapes

to create new geometries, performing automatic stitching operations, manipulating the geometries using

other geometric operations, converting 2D curves to 3D surfaces, tracing and stitching 3D surfaces, using

speech input for inputting commands, using a 3D mouse for geometric and viewpoint manipulation.

– Following are some of the things that will be observed for each task: is the task completed successfully?

Is task completed in allotted time? How much time is taken foreach task? How many times the user has

to try to �nish a task successfully? If a task can be done through multiple modes, which mode was used to

complete the task?

– Benchmarks: benchmarks include correctness and completion of the task and, in some cases, within the

allotted time.

– Success or failure: this will be determined based on whethera task is completed or not. For some tasks, it

will be based on whether or not the task is performed within a certain period of time.

� The frequency or timing of the task: at this stage, how frequently users perform certain operations will be

measured - this identi�es the most frequently used tasks, how much time is being spent on these tasks, and

determines the number of `mode switches'. When users performcontinuous operations such as tracing, stitching

and geometric manipulation in the GuTS system, it will be dif�cult to monitor these operations visually. In those

circumstances, it will be helpful to develop a custom feature that tracks the usage of GuTS operations and the

subsequent time-stamps. Once these operations and time-stamps are recorded for each user and task, the required

information can be retrieved automatically from the recorded data with little effort and great accuracy.

� The complexity and dif�culty of the task: complexity of a task in the GuTS system can be measured through

different parameters - such as number of sub-tasks requiredto �nish a task, total time required to �nish a task,

different types of sub-tasks involved to complete a task, user's analytical and motor skills required to complete

a task, etc.

143

� The physical environment of task performance: the study will be performed in an academic setting in a computer

lab - the tools that will be provided are as shown in Fig. 5.2.

� Planning for learning and breakdowns: users will be debriefed on the usage of the input/output devices; how to

navigate and control the interface in the GuTS system; one ortwo examples will be demonstrated to the user;

the user may then spend a few minutes using the GuTS system before the experiment starts. Users will know

how the GuTS system can be used but will have no details as to why a certain feature is implemented in certain

way so as to eliminate bias and avoid contaminating the experimental results.

A.5 Design Decisions

At this stage, decisions are made on how the system will be implemented. Key design decisions are documented

formally. This documentation will contain, for each designdecision, the decision itself, alternatives considered and the

rationale for selecting a particular alternative. The rationale may draw on published usability guidelines, prior relevant

research studies or data gathered from the target audience.

Some of the key design decisions and reasons to choose them are listed in Table A.1.

A.6 System Description

In this stage, design decisions are made concrete. These will be documented in two forms: (a) an overall layout of

the system architecture and (b) a prototype of all or a major portion of the system. A detailed description of the GuTS

system's user interface is presented in Chapter 5.

A.7 Evaluation

Evaluation of the user interface can be classi�ed in severalways. One method of classi�cation is summative

evalution and formative evaluation.

In summative evalution:

� Evaluation of the user interface is done after the system hasbeen developed

� Typically performed once at the end of development

� Not a formal procedure

� Evaluation data is used in the next major version of the software

In formative evaluation:

� Evaluation of the user interface is done while the system is being developed

144

Design decisions Reasons

Pen-based input Draw, sketch, and trace mimics the process as in the paper-pencil draw-

ing paradigm; Easy, direct, and �uent to trace geometries

3D-mouse input Allows direct manipulation of 6-DOF in 3D; Eliminates mapping be-

tween 2D and 3D input

Speech input Provides an additional mode of input that allows the user to input without

interrupting the current tasks; Decreases `mode switching'

Auditory output Provides an additional mode of output and does not distract the user's

visual attention from the current task; Acts as a user guiding mechanism

Guided trace and stitch

paradigm

Eliminates the need to possess a complex knowledge of geometric mod-

eling; Enables precise modeling; Provides a WYSIWYG user interface

and short learning curve

Snapping mechanisms Provides rapid alignment of geometries precisely; Eliminates the need to

possess a complex knowledge of geometric modeling; Provides a WYSI-

WYG user interface

Two-handed input Increases productivity (compared to uni-manual input); Mimics the real-

world drafting process with two hands

Visual data tablet Provides better hand-eye coordination (compared to the regular 2D

mouse and monitor setup); Direct sketching over the geometries as in

paper-pencil drawing

Multimodal user interface Provides multiple coordinated I/O interface; Eliminates mode switch-

ing; Allows manipulating geometries while performing additional tasks

simultaneously

Table A.1 Key design decisions and reasons

145

� Evaluation starts as soon as the system development cycle starts

� Evaluation appears as part of the prototyping

� Very formal and well organized procedure

� Evaluation is performed several times during each development cycle

Data collected through formative evaluation is classi�ed as follows:

� Objective Data: Data that is observed directly, and these are facts.

� Subjective Data: Data that is generally the opinions of the users. Sometimes, this is a hypothesis that leads to

additional experiments.

� Quantitative Data: Data that is numeric, performance metrics, opinion ratings, statistical analysis, etc. This data

tells that something is right or wrong.

� Qualitative Data: Data that is non-numeric, user opinions,observations, etc. This data tells what is right or

wrong.

The steps in formative evaluation include: design the experiment and user study; conduct the experiment and user

study; collect the data; analyze the data; draw conclusionsand establish a hypothesis; incorporate the results and

conclusions into the system; and repeat the whole cycle again.

Formative evaluation consists of different methods. They are:

� Inspection methods: in this method, usability experts inspect the system during formative evaluation.

� Testing methods: in this method, usability tests are conducted with real users under observation by experts.

� Inquiry methods: in this method, usability evaluators collect information about the user's likes, dislikes and

understanding of the interface.

It is quite common to do a `pilot study' before performing a large user study. A `Pilot study' is an initial run

of a study for the purpose of verifying that the test itself iswell-formulated. For example, a user takes the test to

check whether the test script is clear, the tasks are not too simple or too hard, the time allotted to perform the task is

reasonable for the user, and that the data collected can be meaningfully analyzed.

146

A.7.1 Evaluation-I

Before the experiment starts, �rst debrief the user. Duringdebrie�ng the user is told at least the following: pur-

pose of the study; what they will be doing; explain they can quit at anytime without any consequences; describe the

equipment and software setup; tell them what will be recorded; and how long the session will take, etc. Mostly, design

the experiment such that the whole session lasts about an hour, but no longer than 2 hours (unless more than 2 hours

are required for the experimental study).

Then give the user a quick demo or overview of the system itself. If necessary, provide the user a hands-on

experience before the experiment starts. Then the user willstart the experiment. Data will be collected in multiple

forms as discussed above (inspection, testing, and inquirymethods). For the inquiry method, an evaluation/survey

form (a questionnaire) is a widely used method to collect data from the user. An evaluation form is a thoroughly

prepared questionnaire that will be completed by each subject before, during and after the test. Things to consider

while preparing the questionnaire are: ask the right questions; you only get one opportunity to ask; and questions need

to be clear consistent and enable quick responses. The questionnaire itself is not presented here but this questionnaire

will be thorough and covers all the key aspects that were discussed in this chapter.

Once evaluation-I is complete, results from the subjects' evaluations are analyzed and compared to the design goals

of the system. Data can be analyzed in several ways - some commonly used statistical methods are ANOVAs and Chi-

Squared tests. The data and results from the evaluation study should support the designer's goals and conclusions.

Any shortcomings need to be addressed and incorporated intothe system's design. If necessary, new hypotheses will

be established based upon the data and the system redesigned.

A.7.2 Evaluation-II

Once the changes based on evaluation-I are incorporated into the system, the next stage of evaluation is performed.

At this second evaluation stage, the subjects can be the samefrom the evaluation-I or they can be totally different.

Having the same subjects would be helpful in comparing the results between evaluation-I and evaluation-II. Sometimes

it is best to keep the experiment same but sometimes it is goodto change the experiment depending upon the amount

of changes that happened since the previous experiment. Then, the whole cycle continues - performing the experiment,

gathering data, analyzing results, and incorporating changes to the system.

