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GUIDED TRACE AND STITCH MODELING USING MULTIMODAL INTERACTION
Rajarathinam Arangarasan

Under the supervision of Professors Michael L. Gleicher\éamim Shapiro

At the University of Wisconsin-Madison

Freeform modeling is an integral part of the geometric miodehnd design process. Existing freeform modeling
systems expect the user to be familiar with the geometriesgmtation and user interface in order to model precisely

and rapidly. As a result, modeling complex freeform geoiaetprecisely and rapidly can be quite dif cult.

In this thesis, we address the problems manifested in dufreeform modeling systems. We introduce a novel
modeling approach called “Guided Trace and Stitch” (GuT8ictv designs curves and surfaces precisely, uently
and rapidly. To achieve its ends, the GuTS modeling apprbashmultiple components - tracing, snapping, stitching,
and a multimodal user interface. GUTS creates new curvesuafaces by tracing prede ned geometries to create an
accurate replica of the existing model, hence achievingigien. The GuTS modeling approach also allows multiple
geometries to be snapped together. As a result, multipleng@es are easily and rapidly traced over and stitched

together to create a complex geometry, hence achievinditapind precision.

The GuTS modeling approach raises several challenges éorintgraction in interactive modeling. However, to
address these challenges, we implemented the idea of amodhi user interaction which uses two-handed input,
3-dimensional mouse input, pen and data tablet, voice jrigna synthesized speech output. Basically, the goal was
to create a user interaction which adapts natural intemastin the modeling realm. This multimodal interface is
designed in such a way as to provide uent and direct intéwact-urther, the simultaneous use of multiple input and

output modes through effective coordination providesdapieraction.

We also implemented a software system based on this appoadleld the “GuTS System”. The GuTS modeling

approach is independent of the underlying data structuvedemonstrate, the GuTS approach is implemented using
Subdivision curves and Bezier curves representation irdiweension, and using tessellated geometry representatio
in three-dimension. This system demonstrates that the Guddling approach is feasible. Using the GuTS system,

we created several sample complex freeform geometriesnoigigtrate the practical usability of this system.

Michael L. Gleicher and Vadim Shapiro
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Chapter 1

Guided Trace and Stitch Modeling Using Multimodal Interaction

1.1 Introduction

Freeform modeling is integral to the design and modeling@ss. The ability to create precise freeform curves
and surfaces is a vital part of applications such as illtistnadesign and analysis. The challenge of precise freefor
curve and surface modeling arises out of the creative nafdreeform modeling. Complex geometries can be created
by either building off of existing curves and surfaces or lbylding something completely from scratch. Freeform
modeling is unlimited by a creator's ideas but is hinderediyent technology. As a result, a model ahead of current
technology can be dif cult to specify and manipulate intgizely. The current freeform modeling systems provide
either precision or uency, but not both simultaneouslyn& both precision and uency are important in the design
process, the lack of either one can be quite frustratingeager.

In this research we introduce a novel modeling approacleadiGuided Trace and Stitch” (GuTS) modeling
using multimodal user interaction which provides precisimapidity, and uency all at the same time. The term
“multimodal” means “having more than one mode”[5], “two oore modes of operation and it is used to refer to
a myriad of functions and conditions in which two or more eliéint methods, processes or forms of delivery are
used’[6]. As it relates to this research (i.e. human compunieraction), multimodal means the use of multiple

different communication channels to extract and conveyrimftion between computer and user.
1.2 Motivation

Recent growth in computing power allows users to design ¢exngeometries that were not possible earlier.
As the complexity of geometry increased, issues surrognp@rformance and user interface increased considerably.
Some signi cant approaches to address the above problengaprovement of geometric representation, creation of
ef cient algorithms for real time geometric manipulatigra®id improvement of input/output (I/O) devices for effeeti
user interface. Most modeling applications use a contrimitgmased approach to precisely model complex geometries.
To design complex geometries precisely and rapidly, theneseds knowledge of the geometric representations and the
system's user interface. Limitations, such as indirectimaation, lack of knowledge of geometric representations

and user interface of the system, become signi cant whetigdegy complex freeform shapes involving multiple



geometries. To improve user interaction some researchusied in Chapter 2, used higher degrees-of-freedom
(DOF) 110 devices along with a simpler mesh structure toespnt the geometries. These interaction approaches
provide direct and uent manipulation but lack precisiorong research focused on achieving precise modeling but
lacked uency and directness. Other research focused oncy@nd directness but compromised precision. A trade
off always existed between precision, uency, and rapidity
Many modeling situations bene t from precise, uent and ichfreeform modeling. For example, in the nal

stages of conceptual design, the ability to create pretiapes validates the conceptual model directly. Another
example is the ability of novice users to design complex ggdes precisely and rapidly. In situations like these all

three characteristics - precision, uency and rapidityaypa vital role.
1.3 Goal and Overview

Our goal is to conceive, build, and implement a system togtesbmplex curves and surfaces precisely, uently
and rapidly. To achieve this goal, we introduce a novel apghacalled “Guided Trace and Stitch” (GuTS) modeling
using multimodal interaction.

In the GUTS modeling approach, pieces of new curves andcasfare traced from guide shapes and stitched
together to create complex shapes. Precise segments obg@srare created by tracing over the guide shapes. Au-
tomated snapping and user interaction mechanisms pregilsade the geometries and rapidly manipulate multiple
geometries. Thus precision is achieved through guidednyaaver the guide geometries (for both curves and sur-
faces). Automated snapping mechanisms for the curves satetimition of precise conditions with minimal input
from the user, eliminating additional input and time.

Achieving precision and rapidity using the GUTS modelingrapch raises several issues for user interface. To
address these issues we used multimodal user interaaticimas two handed input, 3-dimensional (3D) mouse input,
pen and data tablet, voice input, and synthesized speephtofy effectively using multiple input and output modes

simultaneously, the user interface is designed to achiaeacy, direct interaction, and rapidity.
1.4 Explanation of Precision, Rapidity, and Fluency

A brief explanation of the terms precision, uency, and ity will be useful.

The de nitions of precision and accuracy are de ned as [1, 9]

“Precision is usually characterized in terms of the stamdbaviation of the measurements, sometimes
called the measurement process's standard error. Pnedtsebmetimes strati ed into: Repeatability -
the variation arising when all efforts are made to keep dms constant by using the same instrument
and operator, and repeating during a short time period; Ragdroducibility - the variation arising using

the same measurement process among different instrumehtsparators, and over longer time periods.
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Figure 1.1 Geometric precision

Accuracy can be said to be the “correctness' of a measurembité precision could be identi ed as the

ability to resolve smaller differences.”

For further clari cation to the readers, the differenceveetn precision and numerical accuracy is explicitly dis-
cussed with an example. In this thesis we use precision fomgé&ic modeling, further referred to as geometric
precision. Geometric precision represents the abilitycieststently recreate or realign multiple geometries (esrv
and surfaces) with desired properties such as shape, oitptend relationships. Geometric precision can be within
single geometry or as a geometric condition between maltipbmetries. Figure 1.1 shows two examples of geomet-
ric precision. In Example 1, as the user traces over a guideca new curve is created that is an exact replica of the
input guide curve. The curve is exactly reproduced irretpeof the number of times it is traced, maintaining preci-
sion within a single geometry. In Example 2, as two geomefi@ brought closer, they snap such that the tangents
are exactly in the opposite direction (i.e. 180Again, irrespective of how many times these two objectstaought
closer, they will always snap such that the same tangenayitomm is produced. This ability to consistently recreate
the properties of a geometry or between multiple geometeigesents geometric precision.

On the other hand, numerical accuracy is the degree of awmitfjoof a measured or calculated quantity to an
actual value. For example, accuracy could be measured hyutinder of decimals places that are used to represent
a numerical value. In the above case, when we mention {&fual value or target value), both 180.0000@hd
179.999999 will be considered equal to 180nith up to 5 decimal places accurate. Unless explicitly rioemd
otherwise, in this research the term precision refers tongtic precision, rather than numerical accuracy. Further

details about precision and accuracy can be found else\yhedg



Fluency is de ned as “the property of a person or of a systeahdklivers information quickly and with expertise -
uency indicates a very good information processing speedyery low average time between successively generated
messages” [97]. Fluency is not associated with any pastidakk. It is the state of being able to smoothly and easily
perform a given function or task. With respect to this reskearuency is de ned as a sequence of events or an
approach the user is already familiar with and/or able tégper with ease. In addition to familiarity, the system also
should respond as a user normally expects in order to maitiiaiease of use. Simply stated, uency shortens the
learning curve and anticipates the user's outlook. Thusiayeis a combination of familiar approach, ease of use, and
expected natural response from the system.

Rapidity is the ability to perform a task or operation in arshperiod of time. It is measured directly in terms
of time and indirectly by the number of operations neededeaidgom a certain task and ease of use. We measure
the success of the GUTS modeling approach in terms of rgpfdtie system allows the user to complete modeling

operations faster than another similar modeling system.

1.5 Overview: Guided Trace and Stitch Interface (GuTS) Modelhg Approach

The following section brie y discusses the GuTS modelingprach and is divided into three sections: curve
modeling, surface modeling, and user interaction. Theeunedeling and surface modeling sections focus on the
modeling of curves and surfaces through the Guided Trac&ttuth (GUTS) modeling approach. The user interaction
section focuses on the design of an effective user intesattemultiple 1/0 modalities that suit the GUTS modeling

approach.

1.5.1 Curve Modeling

GuTS creates complex curves by stitching together piecegroés that are traced from a set of guide curves. The

three basic steps in creating complex curves are:
1. Tracing and drawing pieces of curves from guide shapes
2. Positioning the guide shapes precisely to an existingecur
3. Stitching the pieces of curves together

In GUTS the new geometry is created by tracing over the glidpes. By looking at the guide shapes the user will
know exactly the shape s/he is going to create. This is the tWba See Is What You Get” (WYSIWYG) modeling
approach. It also eliminates the user's need to be familitin geometric representation and the GuTS modeling
approach.

The primary mechanism to create curves in GUTS is to draw tfiezctly using a pen-based input device just as

with the paper and pencil drafting process (refer Fig.1Mbre precise shapes are created by using guide shapes and



Figure 1.2 Tracing of 2D curves from guide shapes in GUTS

shap tools that help precisely position the cursor (drayiogjtion). Guide curves for tracing can be of any shape or
any type (lines, arcs, or freeform curves), including careszated in GuTS system. This exibility allows GuTS to
be easily adapted to create a wide range of complex shapédgferent applications. Guide shapes are transformed
as needed by the user so that curves can be placed where néxglegreferred mechanism for positioning guides
is to use a 3D mouse in the non-dominant hand, allowing thetogeosition, rotate, and scale a guide while tracing
it with the dominant hand using a pen tablet. Since this tirenimics the drafting process, it provides uency and
a direct approach to drawing curves. Figure 1.2 shows timegés using GuTS. The rst image shows tracing over
guide geometries, the second image shows a complex curedrafter tracing over guide curves, and the third image
shows a different resulting complex curve that is tracefédghtly but from the same input guide curves.

In GUTS, snapping is performed at different levels. Snappiiechanisms establish precise relationships between
multiple geometries with minimal user input or loss of tinsmapping the cursor is the mechanism by which precision
is achieved during the tracing operation. Snhapping theegutd existing curves creates the connection between
the geometries for tracing. Relationships between curgensats are also precisely achieved by using snapping
mechanisms. To assist in the creation of precise relatipagietween segments, the GuTS approach provides a set of
shapping operations for positioning the guide curves. &lsesipping mechanisms are variants of gravity elds [93].
When a guide curve is close to a relationship with existingemieces, it snaps to a position that precisely establishes
these relationships. Once snapped, this relationship istaiaed as the user further manipulates the guide, urdil th
guide is pulled away from the precise relationship. Thouggpping mechanisms were used earlier [23, 24, 25] in
the modeling process, geometries were snapped mainly taspaind straight lines using mouse cursor position. In
GuTS, several snapping mechanisms, such as one-pointtar@appint snap, slide snap and conditional snaps such
as tangential and perpendicular snaps, are used to aclelet®e alignment; and absolute position and orientation
alignment is achieved using grid-based snapping. Othemgg&@ operations, such as cutting, smoothing, joining,

sweeping curves to create surfaces, and level of detadl vedsk in the GuTS system.



Figure 1.3 Tracing over a 3D surface in GuTS

The GuUTS approach is independent of the underlying geotneipresentation and can be implemented using var-
ious geometric representations. To demonstrate the fésilve implemented the GuTS system using two different
representations: Subdivision curves and Bezier curvegseptation in two-dimension (2D) and tesselated geometry
representation in three-dimension (3D). From now on tardistish between the GUTS modeling approach and the
implemented software system, the approach is referreced$aihTS modeling approach” or the “GuTS approach” or

simply “GuTS”, and the software system is referred as theT&aystem”.

1.5.2 Surface Modeling

In GUTS, surfaces are modeled using similar approachesras mwodeling. Several of the features — such as
guided trace, stitch, intersect, and smooth — that are peef in curve modeling are extended to surface modeling.

In GuTS new surface patches (or pieces) are created by gragier guide surfaces. A desired surface patch is
produced by selecting a region on the guide surface throwging. This tracing approach easily creates complex
surface patches that cannot be created with ease usingrthentimnal sweeping approach. For completion, the GuTS
system also allows creation of surfaces through convealtioperations, such as extrude, revolve, and sweep.

Tracing the surface patches from guide shapes is primaoitg éh two ways:
1. By using a point pen to draw a curve directly over the guigtase to specify an enclosed region
2. By using a thick brush to paint over the guide shapes t@spations of the guide surfaces

Both of these approaches produce the same resulting supédch, but each approach serves its own purpose
depending upon the tracing region. A detailed descriptidh@tracing operations is presented in later chapters.

Figurel.3 shows three images. The rstimage shows a 3D seidaometry with a curve (letter “"G') traced over
it. The second image shows a couple of characters trimmeft@utthe surface and a third letter being traced. The

third image shows after the word "GuTS' was traced out froenitiput surface.



Figure 1.4 Setup of multimodal user interface

Often complex surfaces are produced by merging severacasftogether. Hence, once the pieces of surfaces are
created as discussed above, they are stitched togethemiatie nal desired complex surface. The GuTS system

allows tracing over multiple guide shapes and produces plmonsurface transparently.

1.5.3 User Interaction

The GuTS approach, like other modeling approaches, prsvidéjue challenges for the interface to a design
program. For example, in the GUTS approach a user must nategaoth the guide geometries as well as other (non-
guide) geometries. Our implemented prototype system expkolutions to these challenges and attempts to maintain
the direct approach and rapidity of the user interface. WheGuTS approach can be implemented with conventional
keyboard, 2D mouse and monitor environments, we used nmadthinteraction with multiple 1/0 devices to enhance
the ease of use which then helps achieve rapidity and uency.

We used a two-handed interface to achieve a natural andt divedeling interface, similar to the drafting pro-
cess. The user holds a stylus-pen in his dominant (right)l lzend a 6 degrees of freedom (DOF) 3D mouse in his
non-dominant (left) hand (refer Fig.1.4). A key advantagéhie 3D mouse over 2D devices is that it allows direct
manipulation of 6 DOF in the 3D environment. A pen in the daanminhand is used to sketch and trace over the
geometries. A at panel display with integrated data talbléws the user to draw the curves directly on the monitor
as if drawing on a sheet of paper. This con guration of theadablet and pen provides effective hand-eye coordina-
tion during the tracing operation. The non-dominant hangsexd mainly to control imprecise manipulations, such as
rotating the object. The automated snapping mechanisnisvaghrecision from imprecise input. Apart from control-
ling the guide shapes, other coarse level controls suclaasforming the geometries, scaling, and panning are also
performed by the 3D mouse in the non-dominant hand. Thisvallmanipulating the geometries without diverting the

user's current operation.



The GuTS system effectively uses input devices in both ofide's hands simultaneously. Hence, during mode
switches and when invoking commands that are performedumsenu selections in conventional systems, the current
operation and work ow are not interrupted. We also use aalditl input mechanisms such as speech input to issue
voice commands and perform mode switches without inteimgghe current operations being performed using both
the hands.

It is important to provide the user with a steady stream ofilieek that includes the state of the system. In
addition to the cues and visual output such as graphicalagispsymbols and colors, we use auditory feedback with
synthesized speech output to provide additional uninpéedifeedback. In some cases, voice output is a mechanism
to guide the users actions. We believe this leads to intesfétat allow the user to keep his visual attention focused
on the current operation, without the distraction of diabaxes or text output windows.

Humans possess the natural ability to interact with eacérdtirough multiple modes concurrently in day-to-day
communication. By utilizing this natural ability, our poaype of multimodal interaction provides the user with two-
handed and aural inputs, good hand-eye coordination, awhhand speech outputs. Since these I/O modes imitate
the real-world interactions of humans, they present a faméffective and direct approach of interaction betwémen t
system and the user. Rapid interaction is achieved sinaestreinteracts with multiple /O modes simultaneously. A

detailed discussion of the multimodal user interface inGlodS modeling approach is presented in Chapter 5.
1.6 Thesis Statement

My thesis is that one can design complex curves and surfaeewsply, rapidly, and uently using a Guided Trace
and Stitch (GuTS) modeling approach with multimodal ustariction.

| support this thesis statement by presenting the concetiteoGuTS approach and its novely; by showing that
the approach is feasible by providing a set of algorithmscrarit for implementing it; and by demonstrating an

implemented prototypical system to support that this apginas feasible in practice.

1.7 Contributions
1.7.1 Novel Approach

One of the primary contributions is the introduction of a elo@pproach called Guided Trace and Stitch (GuTS)
modeling using multimodal interaction to model freeformogeetries precisely, uently and rapidly. In the GuTS
approach geometries are created using three operatioitiedgmacing, automatic snapping, and stitching. Prexisio
is achieved through guided tracing operations (for bottcthees and surfaces) and automated snapping mechanisms
(for curves). Since the tracing operation is direct and téneliminates the need for user knowledge of the under-
lying geometric representation. The GuTS approach alswaltreation of complex geometries through tracing over

multiple guide geometries.



Secondary contributions within the GuTS approach inclddenew snapping mechanisms, such as pivot snapping,
slide snapping, and two-point snapping, and (b) an algoriih trace over curves and surfaces that allows pieces of
curves and surfaces to be traced and stitched togethemtodimmplex shapes transparently.

| support these claims of a novel approach by:
Showing no other similar system exists that does simildstagth a similar multimodal user interface.

Comparing with some of the existing software systems (aed fieatures) and highlighting how the GuTS

modeling approach is novel (for curve modeling, for surfameling, and the multimodal user interface).

1.7.2 Multimodal User Interaction

The second primary contribution is the introduction of atimubdal user interface that provides a direct approach
to manipulation and interaction, and enables rapid deigrugh uninterrupted multiple I/O modes. This multimodal
user interaction brings out the potential of the GuTS apghrdey expanding and exploring the way a user manipulates
curves and surfaces.

| support these claims of the multimodal user interaction by
Comparing with other modeling systems how (and if) they usétimodal interface in geometric modeling.

Highlighting how multimodal user interaction is uniquelytegrated with the GuTS approach of geometric

modeling.

1.7.3 Implementation

The concepts of the GUTS approach needed to be tested fdicplify. As part of this research, we designed
and developed an interactive prototype system, called thESGystem, that demonstrates the GuTS approach with
multimodal user interaction. The results of the prototypmdnstration con rm the feasibility of this novel modeling
approach. The implementation of the GUTS system itself isancontribution, but the lessons learned through the
implementation helped re ne the GuTS approach iteratively

| support these claims of implementation by:
Demonstrating a working prototype system and highligHedint features of the GuTS approach.

Explaining how this implementation can be extended to otyyees of geometric modeling (i.e. using different

geometry representations) and variations of user interfac

1.8 Structure of Dissertation

The rest of the dissertation is organized as follows:
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Chapter 2 describes related previous research perforntée iiollowing areas: curve modeling, snapping mech-
anisms, surface modeling, multiple con guration of I/O dms, and analysis of 6 DOF input devices and user in-
teraction approaches. A review of the previous work helpsrtderstand the earlier geometric modeling and user
interaction approaches. The review also clari es how pasearch lacks precision, rapidity, and uency at the same
time which then becomes the starting point of the GuTS theory

Chapter 3 explains the user's perspective of the GuTS muglelpproach in detail. This chapter focuses on the
user's viewpoint of the GUTS approach and its unique featdrsuch as tracing, snapping, stitching, etc. This is
followed by example geometries created using GuTS. Thiptehavisualizes the GuTS approach from the user's
point of view.

Chapter 4 discusses in detail the geometric representatiaterlying data structures, geometric algorithms for
several features, and other technical details of the GuB&syfor curve and surface modeling. The algorithmic
details presented in this chapter serve as the mathemeaiddity of the GuTS modeling approach.

Chapter 5 describes the GUTS system architecture, muléimegker interface, multiple 1/0 devices, multiple
modalities and its synchronization. Discussion in thisptbaexplains the concept of multimodal user interaction
and its effective usability in the GuTS system.

Chapter 6 presents the sample models created using thenttyiireplemented GuTS system. These examples
serve as a proof of feasibility of the GUTS approach in peactiAlso, discussion of how these models could not be
produced by other software with the same results is predente

Chapter 7 summarizes the dissertation.
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Chapter 2

Previous Work

In this chapter, the related research is divided into twegaties: geometric modeling and user interaction. In
the geometric modeling section, we will discuss differgmets of modeling approaches while in the user interaction

section we will discuss different types of input/outpu@)l/devices and user interaction approaches.

2.1 Geometric Modeling Approaches

Several modeling approaches were implemented in the pasbttel curves and surfaces interactively. Some
of the widely used freeform manipulation and modeling apphes are: control point and control polygon-based

manipulation, snapping, drafting, tracing, pattern miatghgesture and sketch-based, and blob modeling.

2.1.1 Control Point and Control Polygon Manipulation Approach

Interactive drawing began with lvan Sutherland's Sketchpgstem [93], where a light pen is used to draw shapes.
Rather than tracing the paths of shapes, as with paper aruil,gaoints were placed to de ne the geometries. To
date, this is the dominant paradigm in drawing interfacesingetry is controlled through a small set of points, such
as the end points of lines. One advantage to the control paémipulation approach is that by placing the control
points precisely, a precise geometry is produced. The abptint manipulation approach is simple and direct for
modeling simple geometries such as lines, arcs, circlesHewever, the same cannot be said for modeling freeform
geometries. Control point manipulation becomes tedignm tonsuming, and requires expertise in geometric model-
ing in the case of freeform geometries - especially compleso Also, the manipulation of control points in freeform
shapes is limiting as it requires the user to think in termsooitrol points rather than the geometry itself. Recent mod-
eling software allows geometries to be edited directly,dbilitthe user needs knowledge of the underlying geometric

representation in order to model freeform geometries pedciand rapidly.
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2.1.2 Snapping Approach

Methods such as gravity elds [93], grids, and Snap-Dragd®3, 24, 25] are used to precisely position con-
trol points. In this research, snapping mechanisms phggEssition a point to construct curves in 2D and planar-
faced objects in 3D. Since points can be placed precisetyatiproach is signi cant and widely accepted in control
point/polygon manipulation modeling approaches. Desdipitg it is not suitable for freeform modeling. This re-
search is a good starting point for the snapping idea andhslgxtend new snapping mechanisms into our freeform
geometric modeling research.

Baudelaire et al. [21] introduced planar maps to create mapes by sketching planar shapes of regions, called
“map sketching”. In this research multicolored, multi-taured shapes are constructed through iteration of thrage ba
steps: drawing, erasing, and coloring. First, multiplevesrare drawn. Then, the unnecessary portions of the curves
are erased. Finally the geometries and regions are colorachieve the nal shape. The geometric primitives used
in the research are lines, arcs, circles, ellipses and Beaiges. Recently, Asente and Schuster [16] extended this
planar map concept to a system called “Live Paint” that islalvke as a feature in the commercial illustration software
Adobe® Illustrator® CS2. While this research provided an unique approach of dgaad erasing multiple curves
together to form a nal shape, it did not focus on creatingittigal geometries or on creating freeform surfaces. The
GUTS approach, on the other hand, does provide a way to creatdify and manipulate both curves and surfaces
using the same approach.

Honda, et al. [56] discussed an interaction technique déilltegrated manipulation” that allows basic operations
such as move, rotate and scale without switching mode. Bas#k relative starting cursor position to the geometries,
one of these basic operations is automatically chosen. ditiad to this, based on proximity, a line segment snaps
to other existing points or aligns with other existing liregments. While this approach provides a way to avoid
switching mode, this is limited to only line segments. In @&TS system, we apply different methods to avoid mode
switching.

Igarshi, etal. [60, 59] showed a drawing system using ptei@and cleanup for rapid creation of precise drawings.
From the user's free stroke the system identi es the apgatgconstraints, creates a precise geometry progregsivel
and beauti es automatically. The user's straight line ké®and corresponding constraints allow this system to draw
line segments only. Unlike this technique, the tracing méghe in the GuTS approach creates any forms, including

curves and surfaces, rapidly and precisely - not just ligensats.

2.1.3 Drafting Approach

Singh [91] presented a digital version of the drafting pesctiarough the use of French curves. In this research a
methodology is provided to represent French curves in aadlifgirmat using elliptical arcs. Precision and uency are

achieved by mimicking the traditional drafting processisTiesearch focused only on French curves and elaborated
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a way to create French curves digitally, which then uses tfentracing. Even though this research is limited to
French curves, it provides some initial ideas about thertgagperation for curves and furthers our research directly
by considering complex guide curves as well as guide swsfdogthe GuTS approach, de ning and tracing is only a

subset of the modeling approach.

2.1.4 Tracing Approach

In the commercial modeling system called nga73] from AutoDesk® , NURBS-based curves are drawn on
top of the NURBS surface to select a region. While this apgraasimilar to our research, there are considerable
differences. First, our research used curve modeling gir@utracing operation which is not available in Mgﬂya
Second, we used polygonal mesh instead of a NURBS or sulmfivdsirface representation. Finally, our research
showed multiple geometries can be used together directipglthe tracing operation but in this commercial system

only one surface geometry can be used at a time.

2.1.5 Pattern Matching Approach

Arvo et al. [15] described “Fluid Sketches” for recognizimigede ned basic entities automatically from the user's
raw input strokes. Baudel [20] discussed shape matchingrenthe user sketches spline curves through direct strokes
rather than control points. Yang et al. [99] used sketcretdasodeling to create 3D parameterized objects from 2D
sketches. In this system the input sketch is matched toimxi&D templates - requiring prior domain knowledge.
In these approaches the user's strokes identify the deshiege and easily create the geometries. Both the above
approaches are very limiting since they recognize only afptede ned curves and do not extend for any general

freeform curve or surface modeling.

2.1.6 Gesture and Sketch-Based Approach

Some systems achieve uency by constructing 3-dimensi@dR) shapes automatically from the input of 2-
dimensional (2D) freeform strokes. Cohen et al. [38] désatian approach of creating spatial curves from two
2D input drawings - one for the curve as it looks from the coirndewpoint and the other for its shadow on the
oor. While this approach allows the creation of 3D curvesidipby inferring the input strokes, it does not help in
modeling precise geometries. In “Sketch” [100] a gestuasell interface allowed rapid modeling of CSG-like models
consisting of simple shapes. Although this system providesision through constraints, it is suitable only for sienp
shapes rather than complex freeform geometries. In “Tef&b]'plausible 3D polygonal surfaces are created directly
from the input of freeform planar strokes. This approachasyeand rapidly constructs 3D shapes, but it creates
approximate rather than precise geometries. In the GuT®agplp precision, uency, and rapitidy is achieved through

guided trace, automated snapping, and stitching processes
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In recent years, as pen and tablet computing systems becal®ly and cheaply available, sketch-based modeling
became more popular. Due to the increased popularity otksiedased modeling in recent years, a dedicated full
sketch-based modeling course [68] was given at Siggrapte-obrihe largest international graphics conferences.
Several sketch-based systems were developed in recest Yjgaet. al. [62] used a sketch interface for modeling 3D
owers and leaves. Karpenko et al. [63] discussed the “SimBkétch” system that creates 3D freeform shapes from
complex sketches of visible contours of shapes. Kho anda@adil64] used sketching for interactive deformation of
unstructured polygon meshes. Watanabe and lgarashi [8H]aisketch-based interface for terrain modeling. Nealen
et al. [75] used a sketch-based interface for detailed méiimg Schmidt et al. [87] used sketch-based modeling
with a blob tree to model hierarchical implicit models. Afltbese examples highlight the signi cance and popularity
of sketch-based modeling, something we use in the GUTS apipro

Oh et al.[80] discussed a concept system called “SESAMEk&bch, extrude, sculpt, and manipulate geometries
easily. This system only works with simple geometries amdigittline extrusion. Therefore, it is not suitable for
freeform surface modeling. Mizuno et al. [74] presented er uisterface for a virtual sculpting system where a
pressure sensitive pen carves a workpiece. This approgitisiéhe real world chiseling process in a virtual space,

but it is not suitable for freeform modeling.

2.1.7 Freeform Modeling Approach

Some of the early research, such as Sederberg et al. [9@}luks a freeform deformation (FFD) approach to
solid geometric models (represented in CSG or B-Rep). Pedlos et al. [94] described Dynamic-NURBS (D-
NURBS) as a way to directly manipulate through simulatedderand local and global constraints. This is done by
incorporating mass distributions, internal deformatioergies and other physical quantities into the regular NSRB
geometric substrate. Borrel et al. [32] described a new wayareling freeform deformations on surfaces using
constraints called “Simple Constrained Deformations” n€lmints in this approach are posed on a local region of a
surface which is modi ed such that the de ned constraints satis ed. Biermann et al. [26] described a method of
computing approximate results of boolean operations egpb freeform solids bounded by multiresolution subdi-
vision surfaces. Biermann et al. [27] discussed a cut-axsdeptool to copy geometric features from one surface to
another on multiresolution surfaces, but this has limitedfulness due to constraints on the type of shapes and the
lack of real-time interaction. Zwicker et al. [108] presethta system called “Pointshop 3D” that allowed interac-
tive shape and appearance editing of 3D point-sampled gepimegeneralizing conventional 2D pixel editors. The
above research - unlike the GUTS approach - requires a thbnmderstanding of geometric modeling and underlying

geometric representation to create complex freeform ga@seapidly and precisely.
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Figure 2.1 Curve and surface design

2.1.8 Blob Modeling Approach

Markosian et al. [72] described a system called “Skin” tcateefreeform shapes using a particle-based surface
representation that resembled blob modeling. The systiemved a wide range of skeleton shapes, creases and multi-
resolution through subdivision representation. Inténgssmooth freeform surfaces are easily created from simple
input shapes. Due to the nature of blob modeling, this ambreanlike the GuTS approach - produces only approxi-
mate geometries and is not suitable to create precise fraefioapes.

As a summary: Fig. 2.1 shows the current widely used methmddefsigning curves and surfaces. The common
approaches are: to t surfaces to point sets, to create swuawme loft surfaces using curves, or to construct surfaces
directly in 3D. In Fig. 2.1, the thick solid lines indicateggise design is possible; thin solid lines indicate precisian
be achieved in some cases; and dashed lines indicate preglif cult (and may not be possible) to achieve through
current modeling approaches. Generating point sets threagnning requires real physical objects, which is often
not possible in designing new shapes. The approach of ogeatirves and constructing the surfaces (by sweep, loft,
blend, etc.) from these curves is the current well-knowrreg@gh to achieve precise modeling. As discussed above,
it is done using control point manipulation and it lacks tequired uency and direct approach. So far, direct 3D
manipulation provides only approximate geometries andipogations, despite its uent and direct approach. Thus
there is always a trade-off between precision, uency, apdity.

Figure 2.2 shows the layout of designing curves and surfac8siTS, where it allows creation and manipulation

of curves and surfaces directly with precision. Solid tHioks denote precision is maintained during these prosesse
2.2 User Interaction Approaches

As computational power increased, the complexity of gedmetodeling and the need for an effective user in-
terface also increased. Hence, researchers started tdé&yaind once suf cient /O devices, such as the keyboard,

mouse and monitor that only provide 1-Dimensional (1D) abdrferaction, to a new level of user interaction.
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Figure 2.2 Modeling in GUTS

2.2.1 Freeform Modeling Using 6 DOF Input Devices

Since most geometric modeling is in a 3D environment andaatt /& DOF need to be controlled, some research
focused on using 6 DOF 3D input devices (such as Polhemu\Ejension 3D trackers [2], Logitech 3D mouse
[4], Space Ball) to directly interact in 3D. Some of theseifdces allow the user to de ne geometries directly in 3D
using 6 DOF tracking input devices. Because 6 DOF input @sweork considerably differently than a conventional
2D mouse and keyboard setup, they give researchers opjtiesuie think in different ways for modeling freeform
geometries. The 3-Draw system of Sachs et al. [85] createcliBi®s using a 6 DOF tracking device and constructed
3D surfaces by tting a surface through the linked curvesriSet al. [92] extended this approach to create and edit
freeform NURBS surfaces directly using 6 DOF input devic@sme systems, such as “HoloSketch” of Deering [41],
Schkolne et al's [86] “surface drawing' and Bill et al's [2&search, allowed the user to sculpt the polygonal objects
directly using 3D trackers, hand motions and virtual todf®rida et al. [66, 78, 77] described the use of gesture
input and 6 DOF input to simulate pottery modeling as in sgaftd ceramic art. Balakrishnan et al. [18] presented a
computerized simulation of the tape drawing process tyipicaed in the automotive industry. Badler et al. [17] used
an absolute 3D device to manipulate and position 3D objectkifiematic structures. Due to the ability and nature of
these 3D input devices, sculpting and modeling directlylrb&came feasible, direct and easier. Because of imprecise
human input and the imprecise nature of these input devin#g,abstract and approximate models are constructed

using these approaches. Hence, such systems lack theegguértision that is demonstrated in the GuTS approach.

2.2.2 Customized Special Purpose Higher DOF Input Devices

Rekimoto et al. [82] used a new type of input device calledTio®| Stone”, a cordless multiple DOF input device
that enabled the issue of multiple commands by sensing gdiysianipulation of the device itself. Hinckley et al.
[55] and Pierce et al. [81] used a small doll of the actual palaition shape, attached to 6 DOF input devices, to

interact naturally in a 3D environment directly. While foedson new input interaction mechanisms for issuing input
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commands, manipulating objects and viewpoint controlksatly in 3D, they do not provide any solution for precisely
manipulating objects in the 3D environment.

Balakrishnan et al. [19] used a novel bend and twist-semsitiput strip called ShapeTaTBeattached to a 6 DOF
input tracker to create and manipulate 3D shapes direct3pinUsing both hands, the shape tape is manipulated in
the real-world and by using this tape's shape and twistefdren curves and surfaces are created. This approach does
provide a direct and easy approach to create freeform gemsidbut as in other higher DOF input devices, this too

lacks precise input. It is this lack of precision that the Guapproach addresses.

2.2.3 Experimental Evaluations of Input Devices

Several researchers, including Hinckley et al. [54, 52, 88H Zhai et al. [102, 101, 103, 104, 105], presented a
detailed study, experimental analysis, user performanddtse importance of 6 DOF input devices in 3D interaction.
The overview of multiple input devices lets us analyze thethgira of options for input devices. The studies and
evaluation of multiple input devices and interaction metsims help us eliminate many input devices, based on their
nature and unsuitability for precise manipulation in 3Dirfeoobservations from these studies, such as manipulation
of input devices that are controlled by ngers are more mec¢han other input devices that are manipulated through

the palms or arms, aid us in choosing input devices accdgdsiigce precision is an important factor in our research.

2.2.4 Two-Handed Approach

To further improve user performance and enable uent irtiéoa, Cutler et al. [40], Leganchuk et al. [69], Buxton
et al. [36], and Balakrishnan et al. [19], used two-handeeadimanipulation in a 3D environment. In these cases, the
dominant hand provides precise detailed input while thesmminant hand is used for coarse input. Their research
highlights interesting and important aspects of the twodea approach, such as the ability to complete a dif cult
interaction through coordinated and asymmetric bimanuailiis. From the experiment results they observed that
bimanual techniques are signi cantly faster than uni-nsmanipulation and bimanual interaction may be driven
by factors other than simple time-motion performance athges. Llamas et al. [70] discussed a system called
“Twister” that allows two-handed editing of 3D shapes by lgipy orientation changes and rotational constraints at
each displaced point. Grossman et al. [49] used two-handgdalti- nger approaches for gestural interaction with
3D volumetric displays. Yan [50] discussed the simultaseose of two-handed input and multiple ngers through
touch-sensitive screens based on fngstrated Total Internal Re ectiofFTIR) phenomenon. In the GuTS system,
the two-handed approach makes use of the bene ts observilisinesearch. Also, we extend the user interaction
further by adding other input/output modes (multimodaérattion) that allow the GuTS system to be used uently,

directly and rapidly.
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2.2.5 Multiple Input Modalities Approach

Bourguet et al. [33], Arangarasan et al. [12], Grasso et4d], [Billinghurst et al. [29], and Houde [57] all used
speech interface and other modes of input jointly so as tapméate graphical objects directly and rapidly. Arsenault
et al. [14] used force feedback mechanisms by using a forabfeck device (such as the Phantom device [7]) to
provide additional feedback to the user and to interactgffely in the complex 3D environment. All of this research
emphasized the use of multiple modes and established tleetbefmultimodal interaction. The research performed
by Cohen et al. [39], Bowman et al. [34], Blattner et al. [3@HaBrooks [35] created an understanding of the broad
range of performance and characteristics of interactiochaisms. Their research also displays the importance and
effect of multimodal user computer interaction in 2D and 3Dinments.

The above mentioned research not only applied a set of ntieddtr approximate 3D modeling and manipulation,
but also for other different applications emphasizing tgaiscance of multimodal interaction. However, none of the
focused on the use of multiple modes simultaneously to erdibbctness and rapidity in precise freeform modeling.
We apply multimodal interactions such as two-handed inpud, DOF input device, direct hand-eye coordination
through a pen-based data tablet display, voice input anthsgized speech output for effective user interface in the

GuTS system.



19

Chapter 3

GuTS - User's Perspective

In this chapter we present the user's perspective of the GypBoach. The steps involved in the GuTS approach
will be stated. The various operations will be discusseduifing their contributions to precision, uency, and rdiy.

Figure 3.1 shows the sequence of operations and severaksthgeometries in the GUTS modeling approach.
New pieces of geometries are created mainly by tracing atbagguide geometries. Then, further tracing along
the guide geometries extended these existing old geométritorm complex shapes. In addition, as an alternative
approach, existing multiple pieces of geometries are tlyretitched together to form complex shapes. By performing
these operations multiple times, the desired nal geomistattained.

In GUTS, guide geometries are the geometries that are usé@déing and generating new geometries. The guide
geometries and other regular geometries in the modelirgicsesse the same geometric representation. The difference
is guide geometries allow the user to trace over them anddlseytrigger certain snapping operations. Any regular
geometry can be converted to a guide geometry and vice-vaisalifferentiate between these two, in this thesis,
we refer to guide geometries as "guide geometries' or “gslidges' and regular (non-guide) geometries as simply
‘geometries’. In curve modeling guide geometries are a$erred to as "guide curves' and in surface modeling as
“guide surfaces'.

The GuTS approach itself is independent of the underlyirayrgric representation. In our implemented GuTS
system, we used interpolation subdivision curve and 3rdede8ezier curve representations for curves. The user
can select either one of these representations in a modsisgjon. Surfaces are represented by a tessellated mesh
representation.

In short, the main steps are as follows:
1. Generation of guide geometries
2. Trace pieces of geometries from guide geometries

3. Position the guide geometries and other geometriessaigdabsolute global position, relative position to other

existing geometry - curve modeling only)

4. Automatically stitch the pieces of geometries together
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guide geometry
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Figure 3.1 Sequence of operations and stages of geometi@siS

Both curve and surface modeling use the same basic paradigioe-and stitch — for creating complex geometries.
In the following sections we discuss each of these topicsetaitithat are speci c to curve and surface modeling

respectively.

3.1 Curve Modeling
3.1.1 Generation of Guide Curves

In GUTS, new curves are created by tracing over the guideesuGuide curves can be of any shape. Any existing
curve in the modeling session can also be a guide curve amdfoiseacing. This exibility allows GUTS to easily
adapt to create a wide range of complex shapes. In our cum@hémentation of the GuTS system, the guide curves

are generated mainly through scanning and convertingilegigeometries.

3.1.1.1 Scanning

The main goal in selecting guide curves is to choose a linstdf basic general-purpose curves that represent
a wide variety of curves. One such example is a set of Frenoleswand ship curves (as shown in Fig. 3.2) that
covers a wide range of curves for speci ¢ application. Thegeves can be used as a template to produce several
smooth curves (as performed in the conventional draftimgess). In our GUTS system, French curves are scanned
and the outlines are stored as a set of points. Since intipolsubdivision schemes (discussed in Chapter 4) are
one of our geometric representations to present curveigetinsets of initial points are suf cient to easily attaireth
required smoothness of the curves. If required, generafi¢irench curves digitally can be adopted as suggested in
[91]. Currently, this scanning and storing of the set of p@fnom the guide templates is performed manually to show
that the guide geometries can be scanned and used effgétible GUTS approach. This process can be automated
with little effort in order to scan a large number of guide gextries. Figure 3.3 shows the actual process involved in

scanning guide shapes. Figure 3.3(a) shows the scanned iofi@greal French curve. Figure 3.3(b) shows a small
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Figure 3.2 Generic guide templates - French curves and Sines

set of scanned points on the boundary of the French curveurd-i813(c) shows the scanned Bezier curve (and its
corresponding Bezier control points) on the boundary offtench curve. Figure 3.3(d) shows additional points are
included for interpolation subdivision representationgufe 3.3(e) shows the resulting French curve, and the nal

French guide-curve is shown in Fig. 3.3(f).

3.1.1.2 Converting existing geometries

Another way of populating the guide geometries is to contlest existing geometries to guide shapes. Since
regular geometries and guide geometries use the same g@oraptesentation, converting the geometries back and
forth is straight forward. Using this approach, multiplegestries can be combined together to easily form complex

guide shapes. Fig. 3.4 shows some of the sample guide cinaesre used in the current GUTS system.

3.1.2 Drawing and Tracing Curves

The primary mechanism for the user to create curves in theS&y$tem is to draw them, using a pen-based input
device. Just as with paper and pencil drafting, more predigpes are created by using guide shapes and tools that
help position the pencil precisely. As haptic feedback fles precise guiding in the real world, precision is achieve
using gravity elds [93] that attract the cursor towards thede shape when the pen is near the guide shape. Then
the user traces the desired portion of the guide shape, asighd-ig. 3.5. Details about snapping mechanisms are
discussed in the following section.

Guide curves can be of any shape and type (such as line, aftseform curves). The traced geometries inherit
the properties of the guide shape and are presented in thegaometric representation. The complexity of the guide
curve does not affect the interaction, performance or thpeageh of tracing. For example, the cursor also snaps to
existing curves, making it easy to connect to them. Guidpebare transformed as needed by the user so that curves

can be placed as needed. Our preferred mechanism for pasgiguides is to use a 3D mouse in the non-dominant
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Figure 3.5 Tracing from guide curve

hand, allowing the user to position, rotate and scale thdegaiirve while tracing it with the dominant hand using a

pen tablet. This directly mimics the drafting process.

3.1.3 Precise Positioning and Stitching

In the GUTS approach, snapping is used extensively. Sesreapbing mechanisms provide the required precision
to perform several tasks. The snapping mechanisms in teéreximodeling systems are primarily the mouse cursor
shapping to geometries. In the GuTS approach, while cursappng is used, several other snapping mechanisms
are also introduced. In the GUTS approach, the whole gegrbettomes a snapping object and each guide geometry
snaps to other regular geometries. This whole geometrypamgallows different types of snapping in the GuTS
approach. They are: one-point snap (pivotal snap), twotmriap, xed shap, and slide snap. Each of these shap
mechanisms are discussed below in detail.

The primary tasks in snapping are: positioning the curscation for tracing; positioning the guide curves and
regular curves; and positioning the curves absolutely latively to other curves. As seen in the previous section,
shapping the cursor to the guide shapes provides precisiamgthe tracing operation.

To create precise relationships between segments, onguosison the guides precisely. To assist with this, GUTS
provides a set of snapping operations for positioning thdegourves. Because the end points of existing curves exert
gravity, it is easy to extend a previously drawn curve piedout introducing a gap, as shown in Fig. 3.6. These
snapping mechanisms are variants of gravity elds. When dejaurve is close to a relationship with existing curves,
it snaps to a precise position that creates the desiredardaip. Once snapped, this relationship is maintainetias t
user further manipulates the guide, until the guide is pudleay from the precise relationship. For example, after the
user draws a segment of a curve, the user can position the guigte at a different place to extend this curve. If a
guide is moved close to an end of an existing segment, it soagmnnect to this point.

Figure 3.7 shows different snap mechanisms that are intemtlin the GuTS approach. The snapping of a guide
to a position is the basis for several types of snapping ¢ipesa The basic form, which we call a one-point snap,

provides the starting point for more complex snapping dpara. Once the guide is snapped using a one-point



Figure 3.6 Tracing further

Figure 3.7 Gravity-based point, slide and xed snaps
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Figure 3.8 Grid based snapping

shapping operation, the guide can be further manipulatedirs that preserve the point connection. While one-point

shapped, the guide can be rotated around the snap poirgd@fivotal snap) or translated such that the connection
is maintained by sliding along the guide curve directionefwint connection established by the one-point snap is
maintained. Mechanisms for establishing precise oriemtatlationships add to the one-point snap. For example, as
the user rotates the guide, if the orientation of the guidiegisrit close to either being tangent or perpendicular to the

existing segment, the guide snaps to establish this rakttip precisely.

The two-point snap also sets the orientation of a guide #fiesnapped to an end of the existing geometry. As the
user rotates the guide curve around the snapped point, gftitke comes close to another snap target point, the guide
curve is rotated so that the second point snaps to the taoget prhis makes it extremely easy to position guides
to connect two curves or two different target points. Differ snapping mechanisms - pivotal snap, slide snap, and
two-point snap - are novel snapping mechanisms and are gagocontributions of this research.

Traditional grid-based snapping as shown in Fig. 3.8, thaugf novel, is also used in the GuTS system. Grid-
based snaps are used in the GUTS system to achieve absautinete precision. With all of our snapping mecha-
nisms, the stickiness of the snap is important. Snaps mugttdie enough to make it easy for the user to establish the
relationship without positioning the guide precisely. Bmaps must also be sticky enough to maintain these relation-
ships, without being so sticky that the user cannot pull thidgyaway from the curve. For example, after the initial
one-point snap, small motions tangent to the guide aregrdtrd as sliding the curve but still preserving the snap,
while larger motions normal to the curve pull it away fromiitgtial snap. The issues of engaging and disengaging
snaps become even more important in cluttered drawingsendreincreased number of potential snap sites may cause
an increased number of unwanted snaps. This clutter proislamissue in any snapping interface and has been ad-

dressed in previous systems by locking mechanisms. Seatbiel concepts, such as selective geometry manipulation
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Figure 3.9 Digitized french curve in the GUTS system, as tiaeing a guitar sketch

and layered geometries, can also be used to avoid the ghuttielem. More details about this are discussed in Chapter
7.

Figure 3.9 shows the actual snapshot of the tracing operatigprogress. The crossed box at the point that
connects the guide curve and the regular curve represemtatigent snap established between these geometries.
As a summary, some of the earlier research [93, 25, 24, 28Yitbesl simple snapping mechanisms such as gravity
eld and conditional snaps (tangential, perpendiculae,)etin this research, we introduced new additional snappin
mechanisms such as pivot shap, two-point snap and slide thagprovide the required precision during several

geometric operations.

3.1.4 Automatic Continuity Detection

When multiple curves are joined together it is essential twiple the desired continuity between the curves. The
shapping mechanisms provide an indication of the typesmtirmaity that the user desires. In cases where snapping is
not used, automatic continuity mechanisms are employestédbksh relationships between segments.

The automatic continuity mechanism automatically dett#wssuitable continuity condition based on the angular
difference between the two curves and their curve typese¥xample, with a subdivision curves representation, when a
C! continuity curve is stitched to anoth&P continuity curve, it establishes ti&® condition at the stitching point and
the resultant curve also will haw@® continuity. In another example, wherCa curve is stitched to anoth@? curve
and the angular difference between these two curves is metmstain threshold level, it produc€s continuity at the

stitch point as well as all along the resultant curve. On theiohand, when tw@? curves are stitched together and
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Figure 3.10 Auto continuity detection

Figure 3.11 Smooth operation

the angular differences are above the threshold level,itq@oducesC® continuity at the stitch point but maintains
C? continuity everywhere else on the curve. Figure 3.10 shtwgtocess of automatic continuity detection when
two curves are connected together by different scenaribis. ifisures that the desired continuity is maintained at the
stitched region as other drawing operators, such as themamt operators (discussed in a later part of this chapter)
are applied. In a Bezier curve representation, at the caiomegoints, depending upon the settings of the geometries,

eitherC® or G* or C* continuity is created.

3.1.5 Other Geometric Features and Operations

The geometric operations and features described in théopiesections provide a way to create curves rapidly and
precisely. For completeness of the GUTS system, we usedas@emmetric features and operations. In this section

we brie y discuss those geometric operations.

3.1.5.1 Smoothing

Freehand drawing is an easy solution when a user wants tdlyuereate some random freeform curve that cannot
be easily and uniquely de ned by a set of guide shapes. Digamooth, freehand curves without a guide is dif cult:
curves created by freehand drawing always contain wigglestd imprecise human input and sampling issues. A

smoothing tool is essential to make freehand curve skejaiseful. Our smoothing tool applies to the curve locally
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by removing wiggles at any speci ed curve region (refer RBgl1). In our current implementation, a weighted n-
point smoothing algorithm is used for smoothing the curvethis approach one vertex is adjusted at a time without
changing element topology but improving element qualitythie interactive mode, as the user moves the cursor along

the curve, the closest point is adjusted. Thus the uencysndothness of the freehand drawing are maintained.

3.1.5.2 Gestures

Though the tracing mechanism can be used to create basicatjoahapes (such as circles, arcs, ellipses), it can
be inconvenient as it requires the user to select the gumlgeséind then trace the entire shape. To facilitate the oreati
of commonly needed shapes, we have introduced a simplergesitognition feature to identify basic shapes such as
a line, circle, ellipse, and arc, directly from freehandidaled strokes. Our gesture-recognition algorithm suioleis
a scribbled input into a set of regions and considers theildision of points in each cell. Based on the distribution
of the points, the nal basic primitive is derived. The détabout how the primitives are derived from the freeform
sketch are provided in Chapter 4. Figure 3.12 shows simpiletded drawings for a circle and a line, where the region
is divided into basic 3x3 cells. The same logic can be extéridesubdivide the cells further for more ef cient and
precise recognition of shapes. Though this method cannasée to recognize any generic shapes, basic shapes such
as a circle, line (horizontal, vertical, inclined), ellggsand arc are well recognized. This feature is especiaéfulis
when creating basic shapes rapidly. In the GuTS system, dbeselects the scribble mode to activate the gesture
recognition feature. Once the gesture recognition feasungned “on', the user's scribbled input is used to recogni
the basic shapes rapidly. This “on/off' feature helps téedintiate between regular tracing and gesture scribblgtin
The basic shapes created from the scribbled input are likeotirer geometries - those can be used as guide shapes

and use them for further tracing and stitching operations.

3.1.5.3 Level of detall

Often, it is more convenient and computationally inexpensd work with curves at low levels of detail. Such
multi-resolution work is well supported within the GUTS & when subdivision representation is used. For one,
the guide shapes can be provided at varying levels of resnlwllowing speci cation at any point. With subdivision
schemes, different levels of detail are easily achieveds fdature enables the user to create a complex curve with
different levels of detail at different portions of a curfar example, when a guide shape at different levels of dstail
used to trace a different portion of the curve, the resultimye will contain these varying levels of detail. Though th
level of detail can also be controlled automatically basedhe curve properties, this feature provides the user with
an additional control to modify the curve as desired.

Figure 3.13(a) shows a coarse curve that contains feweicesrt As the curve is re ned to the next level, as
in Fig. 3.13(b), it becomes smoother and re ning furtherdweces the smooth curve shown in Fig. 3.13(c). After

repeating the re ning process several times, the changsgkea two different levels become negligible and the nal



Figure 3.12 Basic gesture recognition

29



30

Figure 3.13 Course / re ne operation

curve is called the limit curve, as shown in Fig. 3.13(c). He®metric operations and manipulations are easily
performed at the coarse level because fewer vertices askvatll Once the operations are completed it can be re ned

to the required smoothness.

3.1.5.4 Cut/trim

In most cases the user can create a complex shape by onlyggudies of curves together. Sometimes just by
removing a portion of a curve helps to get the desired shagity @ad potentially avoids several stitching processes.
In the GUTS system, two types of cuts are provided: “poind'@rtd ‘region cuts'. "Point cuts' are done to split the
curve and “region cuts' are performed to split the enclosgibn of a curve into pieces. Both cuts are illustrated in
Fig. 3.14. When performing the region cut, guide shapes cantad used to precisely trace the path of the cut in the

same way a curve is traced during creation.

3.1.5.5 \Vertex-level operations

Inspired by the availability of the point-set given our siviglon implementation, there is a whole new range of
operations that can be performed on the curves. We allowsgeta perform operations on the individual points that
make the curve. One example is vertex-level editing. Velggrl editing allows some interesting operations such
as drag and twist (vertices), erase (a vertex or edge), amadgehcontinuity of a vertex (to create a crease). These
features are especially interesting since this allowsrobof the curve locally. Figure 3.15 shows a vertex-levebtw
and drag operation on a curve. User selects a portion of tive @nd then the selected portion of the curve is twisted
and dragged to modify the shape of the curve locally. Figuté 3hows another example of vertex level operation -

vertex and edge erase. This feature allows to erase part aiitve locally.

3.1.5.6 Intersection

In the GUTS approach, one of the most commonly used opesgaisomding the intersection of curves. As the
user moves the geometries, the intersecting points of gem®@re calculated and displayed to user in real-time.
To achieve interactive system performance, intersectioasomputed at two stages as shown in Fig. 3.17. Initially

the approximate intersections are computed and display#uetuser. Since multiple curves are used in the GuTS



Figure 3.14 Cut operation (point cut and region cut)

Figure 3.15 Vertex level twist and drag

Figure 3.16 Erase (vertex and edge erase)
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Figure 3.17 Multi-level intersection

system, these approximate intersection points are dyméisnand automatically computed, and displayed to the user.
When the user refers (or tries to use) any intersection poirary further operation, it computes the exact intersactio
by recursively re ning up to the desired accuracy. This tstage intersection process reduces the computation time
considerably and computes all the intersection pointsy &ith complex shapes, during real-time interactions. This
two-stage intersection process is performed transpgrenthe user without any user intervention. The user will not
notice this two-stage operation during the modeling sessidne calculation and display of intersection points in the
GuTS approach allows the user to trace between multiple g without interruption. This feature also provides

a WYSIWYG (What You See Is What You Get) interface for tracing aweittiple geometries.

3.1.6 Dimensional Tags

Dimensional tags are a set of origins (oriented points)ititatactively display the dimensions between any user-
preferred position and the current location of the guidengetoies (and/or the current input position). This feature
allows the user to interactively identify the dimensionshwespect to several locations simultaneously. In Fig83.1
two dimensional tags - one at the origin of the drawing spackthe second at an intersection point - are placed. As
the cursor moves, the dimensions are displayed with referemnthese two dimensional tags. These tags can be placed
at any desired position. This feature allows simultanedawing of multiple dimensions measured from different
points. Other than Cartesian coordinate dimensions, asrstmoFig. 3.18, other types of user-customized dimensions
(such as angles and radial distances) can also be displayed.

For the completion of basic geometric and manipulation alp@ns, several other generic operations such as copy-

ing, deleting, scaling, and mirroring are also performethansame way as in any other modeling program.
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Figure 3.18 Dimensional tags

3.1.7 Example - Guitar Model

Figure 3.19 shows the process in creating a guitar mode€iGtir'S system. Figure 3.19(a) shows tracing the body
of a guitar using a (French curve) guide geometry. Figur8(®)lshows tracing further the guitar body. Figure 3.19(c)
shows after the right half mirrored to form the left half oéthody, and then the top left part of the guitar body is being
modi ed - part of the geometry is erased and new portion ofghemetry is being traced. Figure 3.19(d) shows the
completed guitar model. Several features that are disdwdseve are used to complete this guitar sketch. In several
cases once the drawing of curves is completed, they can deaiseeate 3D geometries using conventional operations
such as extrusion, revolution, and sweep. Thus the curesdert in the GuTS system are effectively used to create

freeform surface geometries.
3.2 Surface Modeling

In the GUTS approach, surfaces are modeled using similaoapipes as described in the curve modeling section.
Several of the features, such as guided trace, stitchsatgrand smooth, performed in curve modeling are extended

to surface modeling. In the GUTS system, surfaces are e by tessellated mesh.

3.2.1 Generation of Guide Surfaces

Unlike French curves or ship curves that cover a wide rangaunfes, there are no generic surfaces that cover
a wide variety of surfaces. So, in surface modeling, the gsigifaces are created primarily in three different ways.
First, basic primitives such as block, sphere, cone, tatgsare used. Second, surfaces are used that are created fro
curves through geometric operations such as extrusioojutsan, sweep, etc. Third, surfaces that are imported as

triangulated mesh models created in other modeling syséeenssed.
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Figure 3.19 Creating a guitar model

(d)
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Figure 3.20 Point trace over guide surface

3.2.2 Tracing Surfaces

Surface patches are created in GUTS mainly by tracing ovdegurfaces. There are two types of tracing: point
tracing and thick-brush tracing.

3.2.2.1 Pointtracing

Point tracing is performed as shown in Fig. 3.20. Using thetpblet, a boundary is traced over the guide surface.
As it is traced, a curve is drawn over the surface and which $iedects a region of the surface geometry. The desired
surface patch of a region on the guide surface is produced.s€kection is primarily done in two steps: using a point

pen to draw a curve directly over the guide surface and theatiog the inner surface patch (bounded region) once

the curve is closed.

3.2.2.2 Thick-brush tracing

In the second approach, a thick brush is used to paint ovaguite shape to select regions of the guide surface,
as shown in Fig. 3.21. Both these approaches produce thetgpenef resulting surface patch, but based on the shape
of surface to be created, each approach serves its own gurpos

Though in both the above cases the guide surface is used iftinguthe boundary of the patch is not precise.
The precision of the boundary as well as the inner surfademéag achieved using the following two approaches. In
addition to guide surfaces, guide curves are also used fewacprecise boundary. As shown in Fig. 3.22, the guide
curve is placed on a plane (usually perpendicular to the diegction) and projected onto the guide surface. Then the
user moves the guide curve as discussed in the previoussectil traces along the guide curve. The resulting traced

curve is projected onto the guide surface. A region of thelgsiurface is then traced which creates a surface patch

with precise boundary.



Figure 3.21 Thick-brush trace over guide surface

Figure 3.22 Tracing over guide surface using guide curves

36



©
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(d) (e)

Figure 3.23 Creating a leaf model through point tracing
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Figure 3.24 Thick-brush tracing

Figure 3.23 shows the actual snapshots of the step-by-etgpenace of the point tracing operation in the GuTS
system. The rst picture shows an extruded surface and dwadra traced curve is drawn in the shape of a leaf. The
second picture shows the same in the shaded view. The tluindr@ishows after the curve is inserted into the surface.
The curve insertion algorithm is detailed in Chapter 4. Tdpsration divides the surface along the traced boundary
and the inner portion of the curve is highlighted. Then bytriing, the outside unnecessary surface is removed. The
nal desired leaf surface is shown in the fourth gure and tfie gure shows the same in wire frame rendering.

The rst picture in Fig. 3.24 shows the actual snapshots aiktbrush tracing over a simple torus object. The
second picture shows after the traced portion of the suifattimmed and the unwanted surface is removed. This
example shows that a complex surface geometry can be creasdlgl through a simple tracing operation using the
GuUTS approach. This is unlike other modeling programs whemsplex and time consuming operations are needed
to create the same geometry.

Figure 3.25 shows the ability to trace using multiple guidepes simultaneously and produces a single complex
surface patch. As these guide surfaces are moved, thedotiens between them is also computed in real-time. This
is another example highlighting how simple tracing overtiplé guide shapes creates a complex freeform surface in
the GuTS approach. In other modeling operations it would sgveral time-consuming complex operations to create
the same geometry. In addition to tracing the surface patfroen guide shapes, basic operations, such as extrude,

revolve, sweep, and loft operations, are also providederGhTS system.

3.2.3 Stitching Surfaces

Designing a complex freeform surface in a single step usisiggle patch is dif cult and tedious. Often, merging
several patches of surfaces together produces the requingplex shapes easily. Hence, once the surface patches are
created, as mentioned above, they are stitched togethemtociomplex surfaces. It becomes important to stitch these

surfaces together in a meaningful way to get the desiredeshag properties.



Figure 3.25 Tracing over multiple guide surfaces

Figure 3.26 Surface stitch
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It is very rare (or impossible) to have the boundaries of any tandom freeform surfaces match exactly so that
the surfaces can be stitched together directly. Therefbeesurfaces need to be processed at the boundary before

stitching them together. Assumiigg andS, are two surfaces that need to be stitched, the followingsceae happen.

1. S;-S,: boundary matches exactly

2. $1-S;: boundary does not match, then following cases will happen
2.1 Overlap (modify - add or remove - vertices within the agef region)

2.2 Extend (modify - add or remove - vertices outside thesmarfegion)

These three cases, exact match, extend, and overlap, ave 8h&ig. 3.26 (a, b, and c) respectively. In case 1,
since both the boundaries match exactly it is straight fodveand the surface patches are easily connected to form a
single surface mesh. In case 2.1, the surface patches pvéilthis case, the intersection of these surface patches is
computed and an exact boundary between the two surfaceg thieintersection curve is created. This produces case
1 and these surfaces are easily stitched.

In case 2.2, when two surfaces do not overlap, a surface Haes d¢oeated between the two surfaces based on the
boundary conditions to connect them. In this case, no ondisnlexists and there is no clear de nition of precise
geometry for the extended surface between the two surfasedavies. At this stage, in the GuTS approach, we
maintain shape precision by creating surfaces that are aslybset of the input geometries (i.e. subset of guide
geometries). We have not implemented case 2 scenariosfgimagivithin the surface and extending the surfaces) in

our current GUTS system, but this can be extended in thegfasian add-on module with additional research.

3.2.4 Other Surface Operations

When designing surfaces it is not possible to get the desheagesjust by creation itself. Often several other

geometric operations are needed to re ne the surface irr eodechieve the desired shape and property.

3.2.4.1 Snapping at the boundary

To assist precise tracing over the boundaries and multipfases when switching between surfaces, a snapping
force is introduced along the boundary and intersectingasifas shown in the Fig. 3.27). When the tracing point is
within the threshold distance, it snaps to that boundanhefdurface or to the intersecting curve forming a precise

tracing operation.

3.2.4.2 Cutting and trimming operation

One important operation is cutting and trimming. As showikiig. 3.28, cutting can be done in several ways. It

is similar to the creation of curves in the curve modelingrapph. In creation, a boundary or a region is drawn on
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Figure 3.27 Snap region along the boundaries

a guide shape to create a new patch. In cutting, the bounddrtha region are drawn on a surface, and the selected
region is removed from the original geometry. All of the irmcmechanisms discussed in the surface tracing section

can be used for trimming the surfaces.

3.2.4.3 Bump and dip features

As tracing is performed over a surface geometry, the tracetiom can be raised to create a bump feature or
lowered to create a dip feature. The raising and lowering lmaperformed easily using the local normal of the
associated vertices. Also, when concave objects are rdisedeed arises to check self-intersection and clear the

geometry accordingly to create non-self-intersectinfes@s.

3.2.4.4 Local smoothing of surfaces

This feature is used to smooth the mesh locally. In this aggr@ne vertex is adjusted at a time without changing
the element topology but improving element quality. To miiketeractive and simpler to use, thick-brush smoothing
(similar to thick-brush tracing) is used to smooth the stefa When thick brush is used, the vertices within the brush
radius are adjusted. Several techniques, such as Laplag@aaging, Optimized-based smoothing and Combined

approaches, can be used. In the current version of the Gust&nsylocal smoothing is not implemented.



Figure 3.28 Cutting surface
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Chapter 4

GuTS - Implementation and Technical Details

In this chapter we describe the technical details, geometpresentation, high-level structure, and algorithras th
are used in the GUTS modeling system. These detailed tedtinformation will help the readers understand the
underlying theoretical details and implementation of th&' S system.

In GUTS, the underlying geometric representation and datiatare is hidden from the user and provides direct
manipulation of the geometries. The GuTS approach is naHdrio any particular geometric representation and it can
be implemented using different curve and surface repratens. In our current implementation of the GuTS system,
we used interpolation subdivision schemes and Bezier septations for curves and triangulated mesh structure to
represent the surface geometries. We choose interpokatiotivision schemes for curve modeling for the following
reasons: this scheme allows editing vertices of the curivestty; resulting limit curve interpolates the initial ool
points; allows multiple level-of-detail through interpdibn subdivision; provides WYSIWYG approach; and it is
easy to implement like a polyline. We chose the second reptason - Bezier curves - for the following reasons:
to demonstrate that the GuTS approach can be implementeg difierent geometric representations; Bezier curve
representation is widely used in many computer graphics@hbD modeling systems enabling compatibility with
those systems; and Bezier representation produces smaatires compared to the interpolation subdivision scheme.
Like the curve modeling, the surface modeling of the GuTS@ggh can also be implemented using different surface
representations. In our current implementation of the Gsys$em, we chose the mesh representation for the following
reasons: multiple curve representations can create mpsdsentation directly; it is easy to represent and impleémen
and it can be easily extended to incorporate subdivisidiaseischemes (discussed in Section 4.4.7). Figure 4.1 shows

a detailed list of the curve modeling functionalities anatfees in the GUTS system.

4.1 Curve Modeling - Subdivision Schemes
4.1.1 Interpolation vs. Approximation Subdivision Scheme

Subdivision schemes can be classi ed into many groups. Caetw classify the subdivision schemes are: ap-
proximation (such as Loop [71], Catmull-Clark [37], and BSabin [42]) and interpolation (such as Four-Point [44],
Butter y [43], Modi ed Butter y [107, 106], and Kobbelt [65). In approximation schemes, both new nodal positions



Figure 4.1 Curve modeling - Functionalities and features
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- the newly created vertices and the vertices inherited fittercoarser mesh - are computed. Consequently, the nodal
positions of the initial mesh are not samples of the nal aoef. On the other hand, in interpolation schemes the nodal
positions of the coarser mesh are xed while only the nodaitans of new vertices are computed when going from a
coarser to a ner mesh. Consequently, the nodal positiotiseninitial (or input) mesh, as well as any nodes produced
during subdivision, interpolate the limit surface. Sinbe tnput points are part of the nal geometry, it resembles
editing the geometry directly rather than through contmh(s.

In our current GUTS system, interpolation subdivision sohg are used. This scheme simpli es implementation
of complex geometric manipulations such as tracing, agitstitching, and local editing with varying levels of dégai
One of the drawback of interpolation subdivision schemekas they produce non-fair curves and surfaces. In the
GuTS approach, we suppress this issue to an extent throeghpht points that are traced from guide shapes with
desired smoothness and properties. Furthermore, sewtoahated stitching and snapping mechanisms guarantee the

required continuity and smoothness properties.

4.1.2 Properties of Interpolation Subdivision Schemes

Even though we did not introduce any new properties of therilation subdivision schemes in this research,
a brief review of the properties of the interpolation sulxian schemes [44, 67] will help the readers understand
the characteristics of different features in this chapBmme of the important properties of interpolation subdivis

schemes are:

An interpolation subdivision algorithm is an insertion @lighm since all the points at stageare carried over

to stagek + 1 and new points are inserted between the old ones.

The resulting limit curve interpolates the initial contpaints.

It produces a straight line iR, whenever the control points lie on such a line

The derivatives of the limit curve can be computed direetiyhout detailed re nement

The resulting limit curves generated by 2-point, 4-poimigl &-point schemes a@®, C*,andC? continuous

respectively.

Given the initial control points, based on the scheme, tterimediate points are inserted. In 4-point scheme four
points are used to compute the new points for the next lexadilé@ly 2-point and 6-point schemes use two and six

points respectively. Our implementation uses the sukidivischeme introduced by Dyn et al. [44] and Kuijt [67].



Figure 4.2 Masks for 2-point, 4-point, and 6-point integi@n schemes
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4.1.3 Interpolation Subdivision Curve Representations

Figure 4.2 shows the commonly used masks for three typesaspimlation schemes and its mathematical descrip-
tion is provided below. Given the initial control poirtg; gin:z 2P 2 RY, intermediate points are added by several

schemes as follows.

4.1.3.1 2-Pointinterpolation scheme

2-point scheme is a simple linear subdivision scheme tlsgria new points at levél + 1 by simply averaging
two points from levek.
k+1 _ 1 K K . H k
Paies = 5 P tpa 11 2n [4.1]

If the curve is closed, then the starting point and endingtparie joined together and subdivided at each level.

4.1.3.2 4-Point interpolation scheme

Given control pointg p; gi”:Z -, Pi 2 RY, intermediate points are added by the following scheme.

1 .
Peg= S+W (BFpaa) W a+pi2)i 100N [4.2]

K 2%n+2

Let us denote the control points at tkdevel set by pf ;. , : Then the subdivision scheme de nes the control

points at levek + 1 by

pktt = pf 1 i 2n+1; [4.3]

1 .
P = S+tW P +pl W tpLe 1 0 2 [4.4]

wherep’ = p; 2 i n+2.

The role ofw in the above scheme is a tension parameter. It has been eligéd} that when the values wof are
0 < w < 1=4 the curve is continuous and when itGs< w < 1=8, it has a continuous tangent vector. In 4-point
schemew = 1=161is most commonly used because at this value this schemedigg@e polynomials of a degree less
than or equal to 3. The valueswfwhich are relevant for application to curve design@re w  1=10. Beyond this
range, though the curve remains continuous, it tends toysechany loops and sharp bends.

The tangent at the, point is provided by

1
1 4w 2

p (i) = (Per P1) WPz Pi2) [4.5]
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For an open curve, two additional points in the beginning &wal additional points at the end of the curve are
needed, which affects the behavior of the curve near its emdg These extra points can be used to control the slope

of the curve at the end points. For a closed curve, the additjpoints are derived from the existing points as follows:

P2=Pn 15P 1= PniPn+1 = Po;Pn+2 = P1.
4.1.3.3 6-Point interpolation scheme

In this scheme six points are used to subdivide the next Evebints. This scheme produces continuous curves

with continuous tangent and curvature.

9 1
Pi+1=2 = T6+2 (pi + pi+1) 16 3 (1t pi+2)t (P 2+ pi+3) [4.6]

For = 0 andw = 1=16, this scheme corresponds to 4-point interpolation scheWiben the value of is
0 < < 002 then it guarantees the continuity of the curvature of theveeu The detailed description, proof of

convergence and analysis of these schemes can be foundifeaiesiearch by Dyn et al. [44] and Kuijt [67].

4.2 Curve Modeling - Bezier Representation

The Bezier [22] form of the polynomial curve segment, nanfegt ®ierre Bezier, indirectly speci es the endpoint
tangent vector by specifying intermediate points that ateon the curve. The Bezier curve interpolates the two end
control points and approximates the remaining intermedjatnts.

For givenn+1 control-point positionspx = ( Xk; Yk; Zk), With k varying fromOto n. These coordinate points can
be blended to produce the following position ved®u), which describes the path of a Bezier polynomial function

betweerpy andp, .

Puy= RoomkBkn(u);0 u 1 [4.7]

The Bezier blending functioBy., (u) are theBernstein polynomials
Bin (U) = C(n;k)uk@ u)" * [4.8]

where theC(n; k) are the binomial coef cients:

n!

[4.9]

P(U= R_opkBkn(u);0 u 1 [4.10]
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4.2.1 Properties of Bezier curves

We did not introduce any new properties of the Bezier curmdkis research, a brief review of the properties of
the Bezier curve is presented here for completeness. Sothe ahportant properties of Bezier curve representation

are:

A Bezier curve is a polynomial. The degree of the polynonmsadlivays one less than the number of control

points.

The curve follows the shape of the control point polygon andanstrained within the convex hull formed by

the control points.
The control points do not exert “local' control. Moving anyntrol point affects all of the curve to some extent.
The rst and last points are the end points of the curve segmen

The tangent vectors to the curve at the end points are centudith the rst and last edges of the control point

polygon.

Moving the control points alters the magnitude and directibthe tangent vectors.

The curve does not oscillate about any straight line morenafhan the control point polygon - known as the

variation diminishing property.

The curve is transformed by applying any af ne transformatio its control point, and the curve is invariant

under such a transformation.

4.2.2 3rd degree Bezier Curve Representation

In computer graphics (CG) applicationsg 3legree curves are commonly used. Quadratic curves are xittee
enough and anything above;3degree gives rise to complications. While certain CAD agpions require higher
order curves, they loose “local control' of the curves thatesirable for most CG applications. The best compromise
for CG applications, and the GuTS system, agg Begree curves which give reasonable design exibility whil
avoiding the increased calculations needed with highdergpolynomials. Considering this and to be compatible with
most CG systems, in our current implementation of the GuBEesy we used,3 degree Bezier curves.

3.4 degree Bezier point function can be written in matrix form:
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2 3
Po
h i L
Pu= u® u2 u 1l Ms [4.11]
P2
Ps
where the "Bezier MatrixM g is 2 3
1 3 31
3 6 30
Mg = [4.12]
3 3 00
1 0 00O
At the end positions of the, 8 degree Bezier curve, the parametric rst derivatives (ek)pare
PY0)=3(p1  Po);PA1)=3(ps p2) [4.13]
The parametric second derivatives are
P%0)=6(po 2p1+ P2);PNL)=6(p1  2p, + p3) [4.14]

These expressions are used to construct piecewise curtre€ Wor C? continuity between sections.

Let us say two 3 degree Bezier curves with control poifSo; p1; p2; p3) and (pas; ps; Pe; P7) are connected
at the end pointps andps. Then, whenpz = ps, C° continuity is achieved.G! continuity is achieved when
(ps  p2) = k(p4 p5), and wherk = 1 in the above equatior;* continuity is achieved. Using the above set of

equations, automatic continuity between multiple Bezigwve segments is achieved in the GuTS system.

4.3 Algorithms for Curve Operations

In this section the algorithms and methodologies that aed ts perform several curve based modeling operations
are discussed. Primarily, we discuss novel curve snappéahanisms such as point snap, one-point snap/pivot snap,
slide snap, and two-point snap/ xed snap. Also we discusdiplementation details of nding the intersection of

curves (for subdivision and Bezier representations), ame#od to create primitives using gesture inputs.

4.3.1 Curve Snap Mechanisms

Curve snapping is one of the key components in curve modélinge GuTS approach. While snapping (i.e.
concept of gravity elds) itself is not new, most of the moitigl systems use snapping the cursor to geometries. In this
research we introduced novel snapping mechanisms callealévgeometry' snapping, where one geometry snaps to
another geometry. While there is a precedent of object snggpia point, in this section we discuss different newly
introduced snapping mechanisms, such as, one-point sivap-§pap), two-point snap ( xed snap), and slide snap. In

addition to these novel snapping mechanisms, the GuTSmsyas® allows traditional snapping mechanisms.
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Figure 4.3 Gravity elds

Figure 4.3 shows the different gravity elds (i.e. snap mts - shown in grey color) of a curve in the GuTS system.
First, at the end of each curve the end points exert a graety of small radiu§ R). Second, a small thickness
( T) along the curve exerts a gravity eld. With subdivision cesythe curve itself is stored as a series of point sets.
Then the gravity eld is computed for each line segment indbe/e creating a thick gravity eld all along the curve.
With Bezier curves, the shortest distance to the curve fragngaven point is calculated dynamically, with certain
thicknesq T) forming a thick gravity eld along the curve. Third, a smafigular portion( ) from tangential and
normal vectors at end points of the curve exert gravity elddl these different types of gravity elds form various
snapping mechanisms.

Figure 4.4 shows different types of snapping mechanismsaiteathe above gravity elds. End point gravity elds
are used to snap two curves at end points. Then one of the g@esnEan be rotated on the snapped point - creating
1-point snap, also called “pivot snap'. The end point gyadtd of a curve can also snap to the thick gravity eld
of another curve. Once a curve is snapped to an end point tfiencurve, the rst curve can be moved (slid) such
that the rst curve slides while touching the end point of #exond curve. The gravity eld along the curve helps
other curves to slide along this curve without detachingciinwes. This snapping mechanism is called “slide snap'.
Angular gravity elds at the end points snap other curves imiaihtain tangential or perpendicular conditions - called
perpendicular snap and tangent snap. Outside these asgalaregions, a curve rotates by pivoting at the end point.
The other snapping mechanism is the “two-point snap'. mighapping mechanism, rst a curve is snapped to an end
point of another curve - forming pivot snap. Then one of theves is rotated until the curve snaps to a second point.
This second point can be from any curve in the modeling ses€iace two points are snapped, then the geometry is
xed at that position - forming two-point snap (also calleded snap').

In addition, gravity elds are introduced as grids in caitéesand/or polar coordinates (refer Fig. 3.8). These
gravity elds position geometries precisely in a global odioate system (i.e. absolute positioning). The cursar als

exerts a gravity eld around its center point. This gravityld provides precise position of the cursor with respect to



Figure 4.4 Snapping Mechanisms: point, slide, and xed snap
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curve geometries, helping trace geometries easily, @lgcisnd rapidly. This snapping mechanism is called “cursor

snap'.

4.3.2 Intersection

In this section, we discuss the implementation details afing intersection points between curves (for both
Subdivision and Bezier representation). While the intdisea@lgorithms itself are not novel, we present the imple-
mentation details to show how we used the subdivision anatse® properties of the geometries to nd intersection
points rapidly, still achieving interactive frame-rate.e\&lso discuss the limitation of our implemented intersecti
algorithm for subdivision curves.

Intersection of the curves is performed in multiple stages through local re nement. With subdivision curves,
rst the intersection between the two curves is performethatcoarse level. If the intersection is identi ed, then the
intersecting segments are identi ed. Then three new vestize computed (for 4-point scheme) and inserted at before,
middle, and after the intersecting segments. Next thedattion between these two local regions is computed and
again three new vertices are introduced. This process tghea until two successive intersection points lie withim
acceptable tolerance limit. The rst picture in Fig. 4.5 slsthe intersection between two coarse curves. The second
picture shows the next cycle, where three new points (shewgola circles) are inserted using the 4-point scheme. The
same approach is applied for 2-point and 6-point schemea<2-point scheme, only one new point is inserted locally
in every cycle. For the 6-point scheme ve new points areliteskin every cycle. This approach nds the intersection
point in constant computational complexity in every cydtegspective of the size or the number of vertices in the
curves. Due to the nature of the interpolation subdivisidmesne, identifying the intersection point(s) between two
curves at any given level of detail is as same as identifyiiegrntersection point(s) between two polylines. Due to the
same reason, if two curves do not intersect at any given Efveétail then the GuTS system will not try to nd the
intersection point, even if those curves may intersect éferent level of detail. Similarly, even if two curves imgect
at a given level of detail, they may not intersect when thelled detail changes. In our current implementation of
the GUTS system, we address this issue as follows: if theesue not intersect at a given level of detail then do not
nd the intersection point; if the curves intersect then adnore accurate intersecting point by recursively incregsi
the level of detail locally. The recursive process stopsmwaereset precision is achieved or when the intersection
calculation is interrupted because the curves transitimm fintersecting to non-intersecting state.

With Bezier curves, the intersection can be calculated iioua ways. Some of them include Bezier Clipping [89,
79], Recursive subdivision using De CastelJau's algorin 31], and higher order (9th degree) polynomial equation
Root nding to a higher order polynomial equation is not ausbmethod and hence skipped. Both Bezier clipping and
recursive subdivision methods are robust and easily imgigaile. In our current GUTS system, recursive subdivision
using De CastelJau's algorithm is implemented. This imtetien algorithm is fast enough and computes intersection

points dynamically as the user moves the curves interdgtivehe GuTS system.
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Figure 4.5 Multi-level intersection

4.3.3 Gesture-Based Primitive Creation

In this section, we discuss a method to create primitives fireehand input strokes. While the presented method
itself is not novel, we present the implementation detailshtow how basic primitives, such as lines, circles, elbpse
and arcs, are created by recognizing the user's freehaokestr

In the GUTS system, the user can turn “on' or “off' the gestao®gnition feature. By default, gesture recognition
feature is turned “off', since the primary mode of input i tBuTS approach is guided tracing. When gesture
recognition is “on', as the user draws a freeform drawing, région of the input sketch is scanned. Based on the
distribution of the input strokes (the number of input psjnivithin this region, the nal primitive is recognized.
Figure 4.6 shows how the input stroke is compared with theepatind, with additional conditions, the nal shape is
recognized. Though the approach is simple, this approamttiids the shapes for basic primitives. Our implemented
gesture recognition in the GUTS system is simple, basedeodigitribution of the input points in the 2D region, and is
limited to only create simple primitives rapidly and uentlAs shown in Fig. 4.6, the scanned region is subdivided into
a 3x3 matrix and the distribution of the number of points ioreaf these boxes is identi ed. Assuming N is the number
of input points in the stroke, then “approximately' N/8 psimare distributed in the outer boxes, and “approximately'
zero points in the middle box. Along with this pattern, thedigidnal condition of the height/width ratio is used
to decide the nal shape. Also, the major and minor radiushef ¢llipses is computed from the height and width
parameters accordingly. Similarly for recognizing thetinthe diagonal columns are distributed with “approxiigate
one-third of the total number of input points and the remmariboxes with “approximately' zero points. Again the
ratio of height/width is used to recognize the differentadgmf line segments. In this approach the recognition is
independent of both the direction of the input strokes, dbagehe repetition of the input strokes. Similarly diffate
patterns and conditions are used to match the arcs. Onagpiliegestures are recognized and basic shapes are created,
those basic shapes are manipulated like any other geonidtig/feature shows that the GUTS system creates simple
shapes through simple gesture input. A complex gesturgnéton system can be found elsewhere [83, 84], that uses

a single gesture stroke to create simple shapes such astéress editing geometries, etc.



Figure 4.6 Gesture recognition algorithm

Figure 4.7 Surface modeling - Functionalities and features
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Figure 4.8 Triangular face structure

4.4 Surface Modeling - Triangulated Mesh Structure

Figure 4.7 shows a detailed list of surface modeling fumstiand features in the GuTS system. In this research
we introduced new tracing mechanisms: zero-point tradimgk-brush tracing, and tracing over multiple surfaces.
As part of the tracing and stitching operation, we develagedlgorithm to insert curves and split surfaces.

In the GUTS system, currently we use a triangulated mesbtateito represent surface geometries. Figure 4.8
shows a face structure. Each face contains informationtatsathree vertices and three pointers to the adjacent faces
ordered counter-clockwise using a right-hand coordingséesn. Adjacent facg 0 is always adjacent to the vertices
V0 andV 1, and similarly faces1 andF 2 are always adjacent to the vertex pa#d andV 2, andV2 andVO0
respectively. Maintaining this order consistently helpsmplicitly represent the edgds0, E1 andE 2 of a face,

between the verticeég 0, V 1 andV 2 respectively.

4.4.1 Algorithms for Surface Modeling Operations

In this section the algorithms and methodologies that aesl s perform several surface modeling operations
are discussed. The important operations in surface mageal@ zero-point tracing, and thick-brush tracing, tracing
over multiple surfaces, inserting a traced curve, intéigeof surfaces, and stitching surfaces. The algorithms fo

zero-point tracing, thick-brush tracing, and automatédhshg operations are presented below.

4.4.2 Zero-Point Tracing

The steps involved in zero-point tracing are trace a cuner tve surface, insert this curve into the surface and
divide the surface accordingly, and stitch (combine) thdase patches together. In zero-point tracing, as the user

draws on the screen, the 2D screen coordinates are conwueiteal 3D ray in the world coordinate system from the
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3D point corresponding to the cursor position in the vievediion. Then this ray is intersected with the guide surface
and the closest intersecting point to the view point is coeghuAs the user moves the cursor, multiple intersecting
points on the surface are computed and connected togetftgnta tracing curve. This tracing curve lies on the guide
surface. Once this curve is traced, then the traced curvesésted into the surface which is then divided along the
inserted trace curve. Once the region is traced, severshtipes can be performed on this surface patch.

During tracing, depending upon the speed and movement af jpgn-tablet creates varying curve quality - i.e.
differing gap between input vertices and different totamfuer of vertices in the curve. To eliminate this quality
variation of the traced curve due to tracing speed, the Gy$®&s provides a Iter with a certain minimum-maximum
threshold value. This lIter helps deciding whether a newteeneeds to be added to the trace curve or not depending
upon the movement, location and difference of the pen-tditden the previous point. So irrespective of the tracing
speed, the quality of the traced curve remains the samer@&dfscussing different surface modeling operations, the

algorithm for inserting a curve over the surface is presknte

4.4.2.1 Inserttrace curve

The algorithm for the trace curve insertion is presentedsgugo code format as follows: (Input to this algorithm
is a traced curve and a set of guide surfaces. Output fromathigithm is a set of surface patches after the traced

curve is inserted into the input guide surfaces):

A For the rstvertex (current vertex) in the trace curve de thllowing

A.1 If the current vertex is already a vertex in the surfacsimgo to step A4

A.2 If the current vertex is fully inside a face, then insért turrent vertex using “face split” (discussed below)

and go to step A4

A.3 If the current vertex is on an edge, then insert the ctivertex using “edge split” (discussed below) and go

to step A4
A.4 Mark and update the surrounding faces of the currenexert

A.5 Make the next vertex in the trace curve as the currenexerhd proceed to step B
B For each remaining vertex in the trace curve do the follgwin

B.1 If the current vertex is already a vertex in the surrongdaces, go to step B6

B.2 If the current vertex is fully inside one of the surroumglfaces, insert this point using “face split” (discussed

below) and go to step B6

B.3 If the current vertex is on an edge of one of the surrounéhces, insert the current vertex using “edge split”

and go to step B6
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Figure 4.9 Face split

B.4 If the current vertex is not inside or on an edge of theaurding faces, project the line segment that connects

the last point and the current point
B.5 Depending upon the status of the projected line segnteand of the following:

B5.1 If the projected line bisects one of the surrounding$amompletely, insert a new point at the bisection
point and make this the current point. Refer Fig. 4.11 forxam#ple - projected curve bisects the face
FO, then a new vertex is inserted at the bisection point acel F® is split to form two faces FO1 and
F02, and face F1 is split to form faces F11 and F12. Go to step B6

B5.2 If the projected line passes along one of the edges aftreunding faces, insert the vertex on the face

at the other end of the edge and make this vertex the curreteixvgefer Fig. 4.12). Go to step B6

B5.3 If the projected line segment lies within one of a sunding faces, extend this projected line further

such that it fully bisects that face, and go to step B5.1

B5.4 If the projected line segment has zero length, then mguensolution exists - throw the exception and

terminate the insertion process
B.6 Mark and update the surrounding faces of the currengexert

B.7 Make the next vertex in the trace curve the current veatekcontinue from the beginning of step B1

C Ifthe curve is closed, then insert the line segment fromabkepoint to the rst point in the trace curve, using step
B

D From the rst vertex of the trace curve, mark the left andchtiaces such that the trace curve divides the surface

into two regions

4.4.2.2 Face split

“Face split' operation is needed to insert a new vertex ssid existing face. Figure 4.9 shows the face split

operation. When the new vertex (Vn) is fully inside a face (Rgn that face is split into 3 new faces (FO, F1, F2),
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Figure 4.10 Edge split

with the order of vertices (VO, V1, Vn), (V1, V2, Vn) and (V2,0yVn) respectively. The old face (F) is replaced
by the three new faces. Then these three new faces' neigitpfarte lists are updated. Then the neighboring faces'

neighboring face lists are updated to complete the facegpdiration.

4.4.2.3 Edge split

"Edge split' operation is needed to insert a new vertex onxistieg edge. The Figure 4.10 shows the edge split
operation. When the new vertex (Vn) lies on an edge, that exigglit by dividing the adjacent two faces of the edge
into four new faces. Faces FO and F1 are split into FO1 and &0&,F11 and F12 respectively with the order of
vertices (VO, V1, Vn), (V1, V2, Vn), (V2, V3, Vn), and (V3, VO/n). Then these new four faces' neighboring face
lists are updated. Then the neighboring faces' neighbdeng lists are updated to complete the edge split operation.

The above mentioned face and edge operations does not hagpetrial mechanism to create or maintain high
quality mesh. Due to the same reason, in our currently implged GuTS system, sometimes (especially during
thick-brush tracing) the mesh results in poor tessellatiorthis research, we did not focus on mesh quality expjicitl

and maintaining a high quality tessellated mesh is a sepagaearch onto itself.

4.4.2.4 Projection curve

Figure 4.11 shows the state described in pseudo code B5thislnase the new vertex does not lie in one of the
adjacent surrounding faces to the previous vertex so tloe tarve is projected over the faces. Since the projected
curve bisects the face FO completely, edge split is usedsterira new point. Then, the previous vertex position is
moved to the newly inserted vertex position. At this poinshewn in the second picture in Fig. 4.11, the new vertex
lies within one of the surrounding faces. Hence, by face,shié last vertex is inserted. This process is continued
until all the projected curve segments are inserted.

Figure 4.12 shows the projected curve coinciding with onthefedges. This corresponds to the state described
in pseudo code B5.2. In this case the projected curve cardidly with an edge, so continue to the next vertex.

As shown in the second picture in Fig. 4.12, no new faces dicesrare created - just the previous vertex status is
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Figure 4.11 Projection curve - Bisects face

updated. At this stage since the new vertex lies within threosmding faces, the new vertex is inserted through the
face split process.

Figure 4.13 shows the projected curve lying within a surding face. This corresponds to the state described
in the pseudo code B5.3. In this case the projected curveténeéad further such that it bisects the face completely,
as shown in the second picture in Fig. 4.13. Then the scebaii® down to the state described in B5.1, which can
be addressed as mentioned in the section above corresgandBb.1. In the current implementation of the GuTS
system, this state is not included and it behaves the sameasvdgscribed for the state B5.4, where the exception is
thrown and the tracing process is terminated. Figure 4.t&sla situation where no unique projection curve exists,

and in this case the GuTS systems throws exception and ttiegnarocess is terminated.

4.4.3 Thick-Brush Tracing

Thick-brush tracing is a process where a thick brush withex speci ed radius is traced on the surface. As
the tracing input point moves, the surface region alongheet path with thickness equal to the brush diameter is
dynamically selected. In the GuTS system, similar to zarortracing, a Iter with certain threshold value is used
to maintain the quality of the trace curve irrespective @ titacing speed. Then this selected portion of the mesh is
used for further geometric operations. In thick-brushitrgcsimilar to zero-point tracing, the 3D intersectionmgoi
on the surface is computed. Instead of creating a trace curvwlis approach the faces are dynamically updated.
This dynamic update of the mesh results in poor tessellabtaintaining high quality tessellated mesh is a separate
research onto itself and hence in the implemented GuTSraystedid not address this issue.

The algorithm for thick-brush tracing is presented in pgeadde format as follows: (Input to this algorithm is
the radius of the thick-brush, a series of input points ofttheed curve, and a set of guide surfaces. Output from this

algorithm is a set of surface patches, after the boundardyeofraiced surface region is computed):
C For every input intersection point during the tracing defibllowing:

C1 Find the face in the surface mesh in which the input intiee point lies



Figure 4.12 Projection curve - Coincides with an edge

Figure 4.13 Projection curve - Lies within a face

Figure 4.14 No unique projection curve
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Figure 4.15 One vertex inside

C2 Check the current face with the sphere of the radius oftie& brush from the current input intersection point
C2.1 If all three vertices are fully outside and none of thgesdintersects with the sphere, then mark this as

fully outside, processed and go to step C3
C2.2 If all three vertices of the current face lie within thpdere, then mark this as fully inside, processed and
go to step C3

C2.3 If one of the vertices is inside the sphere and the rangpimwo vertices are outside, then do the edge

split twice (refer Fig. 4.15) and replace the current facthwhe three new faces. Make one of the new

faces the current face and go to step C2
C2.4 If two of the vertices are inside the sphere and the neinmaivertex is outside, do the edge split twice
(refer Fig. 4.16), and replace the current face with theethmew faces. Make one of the new faces the

current face and go to step C2

C2.5 Iftwo of the vertices are on the sphere and the thircexestoutside and if the chord distance between the
inside edge and the surface of the sphere is beyond a cesterarice limit, insert a new vertex through
“face split” (refer Fig. 4.17). Replace the current facehntite three new faces, make one of the new
faces the current face and go to step C2

C2.6 If all three vertices are outside and an edge of the oufeee intersects the sphere and if the chord
distance between the edge and the surface of the spheredisaycertain tolerance limit, do two edge
splits (refer Fig. 4.18). Replace the current face with tire¢ new faces, make one of the new faces the
current face and go to step C2

C3 Make one of the unprocessed adjacent faces the currenafatcgo to step C2.

Figure 4.15 shows one vertex inside and two vertices outdidéhis case, in the current implementation of the
GUTS system, either one of the shown ways splits the edgeslenaly. Figure 4.16 shows two vertices inside and one

vertex outside. In this case too as above, in the currentemehtation, in either one of the shown ways the edges are



Figure 4.16 Two vertices inside

Figure 4.17 Two vertices "On'

Figure 4.18 Only edge intersects
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Figure 4.19 Trace around intersection point

split - randomly. Since the faces are traversed throughdfaeant faces starting from the input intersection pohw, t
faces that are processed and marked are only connectedHeomtérsection point and within the brush radius. Even

if other parts of the surface lie within the brush radiusytaee not processed intentionally as shown in the Fig. 4.19.

4.4.4 Tracing over Multiple Surfaces

Tracing over multiple surfaces works the same way as tramieg a single surface. Even when multiple surfaces
are used for tracing, at any given instance, only one poiirtssrted and over one surface. So making use of this,
one surface, called the active surface, that is currerdlyetl over is always maintained. When tracing shifts from the
current surface to some other surface, the other surfacade ithe active surface. This is done transparently to the
user. As multiple curves are traced, they are traced ovetipteisurfaces and are associated to that corresponding
surface. Once the tracing process is completed, thoughpiaap to the user that multiple curves are traced over
multiple surfaces, internally each curve is attached tactireesponding surface. Then the computation of the traced
surface boils down to (a) inserting the intersection cuamq (b) inserting the traced curve to the corresponding
surface, as described in the single surface tracing sec@inoe the tracing is completed for all the necessary suwsface
and multiple patches are created, they are merged togetfamt a single surface mesh.

Figure 4.20 shows the step-by-step pictorial view of trg@mer multiple surfaces and stitching procedures to get
the nal desired geometry. Two spheres, A and B, are intéeskand the intersecting curve is calculated dynamically
in real-time. The computation of the intersection curvedsatibed in the following section, and the intersectiorveur
ensures the correct connectivity when the user switchemtgrdrom one surface to another. This intersection curve
is shown in grey. The traced curve which spreads over botlgheres is shown in green - the nal shape that needs
to be created. As mentioned above, the tracing proceduerfermed one surface at a time internally, the same as in
single surface tracing. First the intersection curve igitexd in the geometry. Then the corresponding portion of the
traced curve is inserted in the appropriate surface. Tliduares the multiple pieces of the nal geometry traced from
multiple surfaces. In this example A and B' are the tracettpas from the surfaces A and B respectively. Then these

two patches are combined together to form the nal desirexhoary.



Figure 4.20 Tracing over multiple surfaces
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4.45 Surface Intersection

In the current implementation, we used the V-Collide [58]isimn detection package to identify the intersecting
line segments between the surface meshes. V-Collide isligionldetection library designed to operate on a large
number of arbitrary polygonal objects. It performs ef ctemd exact collision detection between triangulated polyg
onal models. It makes no assumptions about input struchdenvarks on arbitrary models, also known as “polygon

soups”. V-Collide uses three-stage collision detectiahiéecture:
1. An N-body test nds possibly colliding pairs of objects,
2. A hierarchical-oriented bounding box test nds possitdyliding pairs of triangles, and

3. An exact test determines whether or not a pair of trianattsally overlaps.

The N-body routine uses coherence between successivetgped a simulation to perform well in animations
and moving simulations. The hierarchical Oriented Bougdioxes (OBBs) and exact collision routines are taken
from RAPID [47], a component of V-Collide which is also awadile as a stand-alone package.

The basic steps involved in using this library are creatibgas, adding sets of triangles to these objects, choos-
ing which pairs of objects should be tested for collisiorstisg the positions of the objects, performing the cailisi
test, and getting back reports of the test results. Basedhesetresults and any other parameters of the simula-
tion/interaction, the objects may be moved and the colisi@sted again, etc. V-Collide is written in C++, but it also
provides a C interface as well.

The V-Collide library takes the triangulated mesh and retuihe list of the intersecting line segments between the
faces in the input mesh. Figure 4.21 shows two simple meslaes, with two triangulated faces. In this case the V-
Collide library returns three line segments in a random oadé also the intersecting faces. Then in the GUTS system,
these individual line segments are sorted and connectediitothe intersecting curves. These intersecting curves als
store the information about which two surfaces are intéeseto form the curve. This information is used to insert
the intersection curves in the appropriate surfaces dtyres shown in the second and third picture in Fig. 4.21. An
important point to observe here is that the intersectingecis computed and inserted such that the inserted curve
will match exactly between the two surface meshes. Thissgivproper connectivity to stitch surface meshes along
this intersection curve without many additional changes.il&\the complete intersection algorithm involves several
steps and uses multiple libraries, all the necessary fumafities are implemented seamlessly in the GUTS system -

resulting in the dynamic intersection of surfaces intavatt and transparently to the user.

4.4.6 Stitching Surfaces Together

In our current implementation, stitching between surfdwggpens when these geometries intersect over the traced

portion of the region. The intersection curve is computediiatersected to the surfaces such that it ensures the proper



Figure 4.21 Inserting intersection curve
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Figure 4.22 Masks for regular and extraordinary vertices

coincidence between the edges and vertices that con rmgitbeer connectivity between these multiple surface
patches (as shown in Fig. 4.21). Since the vertices and edgteh properly along the intersection curve, the stitching
between the meshes boils down to creating the connectieityden the faces of the surface meshes accordingly,

maintainingC® continuity.

4.4.7 Interpolation Subdivision Scheme (Modi ed Butter y Scheme)

As mentioned earlier, the GUTS approach is independeneafriderlying geometric representation. In our current
implementation of the GUTS system, we used triangular megftesentation. In this section, we present how with
minor modi cations the surface geometries can be represktmsing interpolation subdivision surfaces. A basic inter
polation subdivision scheme called "Modi ed Butter y Sahe' is presented here. The Modi ed Butter y Scheme by
Zorin et al. [107, 106] is a modi ed version of the original Ber y Scheme by Dyn et al. [43], for triangular tilings.
This interpolation scheme produc@s$ continuity surfaces and re nes through a face split rulegiamal). A “mask’
is a picture showing how the old vertices are used to compat@dw vertex for the successive level.

This scheme creates new vertices of valence 6 in the inte@arthe boundary, the newly created vertices have
valence 4. The vertices with valence 6 or 4 in triangulangifi are called regular vertices. Vertices with other vadenc
are called irregular or extraordinary vertices.

Figure 4.22 shows the masks for regular and irregular \estiEor regular vertices, the valuesare 1 =2+w; b =
1=8+2w;c= 1=16+w;d= w (whenw = 0 is used it represents the original Butter y Scheme). Fordhse
when an edge connects asvertex(r 6 6) and a 6-vertex, the neighbors of thevertex are used in the stencil as
indicated in the second picture in Fig. 4.22. For 5 the weights are given by

$+cos(2j=r )+ 3cos(4j=r )

s = r [4.15]

withj = 0;:5r 1 Forr = 3 we takeSy = 5=12,S; = S2 = 1=12 and forr = 4;Sy = 3=8;S; =

1=8;S; = Sz = 0. When the edge connects two extraordinary vertices, takawbrmge of the values computed
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using the appropriate scheme of the previous paragraphafiir endpoint. For boundary edges 1-dimensional four-
point scheme is used. Hence, by adding the subdivision coer@s mentioned above to the current mesh geometry,

surfaces can be easily represented as subdivision suifatesGuTS system.
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Chapter 5

Multimodal User Interface

5.1 Interaction Challenges in the GuTS Modeling System

The keyboard, mouse and 2D monitor are the most commonly inped/output (I/O) devices in conventional
modeling systems. These input devices are suf cient toigidiscrete input, such as input points by clicking a mouse
button or inputting a numerical value through a keyboardesehdevices are not perfectly suitable for continuous
operations, such as tracing that is performed in the GuT$oaph. Also in the GUTS approach, most of the time
multiple geometries are manipulated while other operatiare performed simultaneously. One example is when
multiple guide geometries are transformed (positionedaighted), tracing is done simultaneously. Another exampl
is when multiple operations are repeatedly input sequignitiea short period of time. Another example is interrugtin
an operation to perform another operation and returning bathe original operation, known as "mode switching'.
To avoid confusion between the word mode (modality) in mudtilal user-interface and in tasks performed, we use
the word “task-mode' to represent the latter. So the abowelenswitching' will be referred as “task-mode switching'.
Thus the GuTS modeling approach provides some unique olgakefor the interface to a modeling program.

The GuTS system can be implemented with a conventional mauddeyboard user interface alone. Figure 5.1
shows the commonly used tasks in GUTS and the mapping of tiasks with the conventional 1/0O devices - if
conventional I/O devices are used in the GUTS system. Figurshows four columns: rst left column shows the
tasks list, second column shows the dimension in which tlestare performed, third column shows the nature of the
dimensions of the I/O devices, and fourth column shows tladahle 1/0O devices. "Mapping' is a process to match a
suitable 1/0 device and its available degrees-of-freedd@K) to perform tasks that require certain DOF. For example
a 2D-mouse (2-DOF device) can be mapped to draw on the sae&®DQF task). The same task can be mapped to
perform using a keyboard (a 1-DOF device) using "up', ‘dowleft', and ‘right' keys. However, in this case 2 DOF
drawing task is performed using a 1-DOF device, requiringjtemhal mapping of 1-DOF key movements to perform
the 2-DOF drawing task. So to achieve a best match betwedistloé tasks and available devices, we need to match
the equivalent dimensions pair on the second and third aoiarkig. 5.1. A signi cant amount of the tasks in GuTS
require mapping with the available conventional I/O desicEhis mapping process introduces indirect manipulation

of tasks and operations in user interface. Also, limitedd&ices means increased “task-mode switching' to perform
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tasks and hence increased completion time. While use ofdt#itmal I/O devices may produce a workable interface,
it does not address the above mentioned issues in the GuT8lingépproach.

To address these issues, we implemented a novel multimsdalinterface in the GUTS system. The term mul-
timodal user interface means use of multiple modes in I/@radtion. In the general sense, a multimodal system is
de ned [88, 76] as follows: a multimodal system supports camication with the user through different modali-
ties such as voice, gesture, and typing. Literally, ‘mu#fers to ‘'more than one' and the term "modal' may cover
the notion of "'modality’ as well as that of ‘'mode’. "Modalitgfers to the type of communication channel used to
convey or acquire information. It also covers the way an ideaxpressed or perceived, or the manner an action is
performed. "Mode' refers to a state that determines the wiymation is interpreted to extract or convey meaning.
In user interface design, a mode is “a distinct setting withicomputer program or any physical machine interface,
in which the same user input will produce perceived differesults than it would in other settings” [98]. The modes
(modalities) used in the currently implemented GuTS systesn 3D mouse input, pen-data tablet input, speech input,
video (graphics and text rendering) output, and synthdspeech output. Our prototype of multimodal user interac-
tion explores solutions to the above mentioned challengdgeovides a uent, direct, and rapid interface. From the

author's perspective, multimodal interaction with mukiyO devices enhances the usability of the GUTS system.
5.2 Humans Natural Multimodal Interaction Capability

Humans have a natural ability to use multiple modes in palrathd choose certain mode to perform certain task
dynamically in real-time. Humans use this behavior in seMeays for different reasons - such as, to perform multiple
coordinated “sub-tasks' in parallel to complete "a tashidaly, and to perform “a complex task' by breaking it into
multiple “less complex sub-tasks' and complete the sukstasing multiple modes in parallel. For example, humans
communicate through multiple modes in parallel - such asdlgestures, speech, hearing, visual cues - with ease
and effectively in their day-to-day activities. Anotheraexple, driving a car which is a complex task. This complex
task involves several less complex sub-tasks, such asrgjeaccelerating, changing gears, braking, looking at the
road, hearing noise from other vehicles, etc. Humans useftaeds (to steer and change gears), legs (to accelerate
and brake), eyes (to look at the road), ears (to listen touh®snding noise), etc. Humans perform these multiple
sub-tasks in a coordinated fashion to complete the comph(i.e. driving).

Utilizing this human's natural interaction behavior, theT® system applies the phenomenon of multimodal in-
teraction. Our current implementation simultaneouslyijotes the user with two-handed input, speech recognized
voice input, improved hand-eye coordination, visual otitguind synthesized speech output. Since these modes of
interaction imitate the normal communication modes of hasnthey present a familiar, effective and direct approach
of interaction between the system and the user. Also sireaghr interacts with multiple /0O modes simultaneously,

multiple operations are performed simultaneously in adimated way which aid in the rapid completion of tasks.
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Figure 5.1 Mapping of tasks in the GuTS system for traditidi@ devices (if traditional 1/0O devices are used)
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5.3 GuTS System User Interface Setup

In this section, we describe the GUTS system's user inteifd€) architecture, its multiple modules, pros and cons
of each I/O mode and device, and the process of mapping@ifféasks with multiple 1/0 devices. Figure 5.2 shows

the actual setup of the multiple 1/0O devices in the GUTS sgste

5.3.1 GuTS System's User Interface Architecture

A traditional system’s Ul architecture with keyboard, meuand monitor is relatively straight forward. It requires
two event-handlers for keyboard and mouse, and a rendesimipwing module for visual output. A multimodal Ul
system, like the GuTS system, requires multiple modulesanage multiple 1/O devices and modes, and a sophisti-
cated command parser to coordinate multiple commands fitiereht modes simultaneously. Figure 5.3 shows the
layout of the GUTS system architecture, its multiple mosgluéand interaction ow between these modules.

The "Gesture Recognition' module tracks the input from tée @nd processes it to the appropriate data depending
upon the stage it is used. For example, when tracing overfacguin 3D, it takes the 2D screen coordinates of the
pen and transforms it to the 3D geometric world coordinagtesy as a ray in the view direction. Then this 3D ray is
used to compute the intersection point over the surfaceswibifurther used to generate the trace curve. On the other
hand, in the 2D environment to recognize patterns, suchrelesj ellipses, lines, etc, from the scribbled input, the
2D distribution of points are used directly. The “Voice Rgmition' module recognizes the user's natural voice input
commands processes it, converts it to a command, and seodhét "Command Parser'. The “Speech synthesizer' in
real-time dynamically converts text messages (such assem@rnings, system stages, etc.) to human understandable
language and plays them in audio form. The “Graphics Engloes the rendering of all 2D and 3D geometries. One
of the complex modules is the "Geometry Engine'. This modwletains all the data structures and algorithms for
both the curves and surfaces to perform all the necessangageo computations. Another complex and core module
is the "Command Parser'. This module's primary task is tordmate all the input and output command interactions
between multiple modules. The "Command Parser' receivéspieuinputs and outputs concurrently, and it does the
critical job of recognizing the necessary informationgretiating redundant information, and invoking the apprafari
operation.

The most commonly performed tasks in the GUTS system are:
Manipulating geometries (guide shapes and regular shapes)
Manipulating viewpoint
Tracing operation

Invoking commands



Figure 5.2 Con guration of I/O eevices in the GUTS system

Figure 5.3 Layout of the GUTS system's user interface aechitre
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Rendering visual output
Providing other feedback (such as errors, system staggiethe user

Figure 5.4 shows the commonly used tasks in GUTS and the m@apptasks with the I/O devices used. Figure 5.4
contains four columns: rst left column shows the list ofkassecond column shows the dimensions in which each
tasks are performed, third column shows the dimensionseoatfilable devices, and the fourth column shows the
available I/O devices. It can be observed from Fig. 5.4 thatlist of tasks, I1/0O modes, and devices are matched to
eliminate the mapping process. In our current implememrative used a 2D display output (shown in gray color) but
the GuTS system allows rendering the visual output in ssa@gic 3D rendering (shown in dotted line). In the GuTS
system, uency and rapidity are achieved - through mappiriidp wght devices, by allowing direct manipulation
of tasks, and the simultaneous use of multiple 1/0O deviceiglwiminimize “task-mode switching' in the modeling
process.

Manipulation of geometries and viewpoint controls are 6FD@perations in the 3D environment. The 3D mouse
provides direct 6-DOF input and is used for manipulatingrgewies and viewpoint controls. This provides direct
manipulation rather than mapped (between 3D and 2D) irierawhich is performed using a keyboard or regular
mouse. In the real world, tracing or drawing is performechgsi pen or pencil. The direct uent nature of tracing is
achieved by using the pen-data tablet in the GUTS system.

In the GUTS approach the user must manipulate both the d¢wshape as well as the guide shape. To achieve
natural interaction we use a two-handed interface that osintie real world drafting process. As shown in Fig. 5.2,
the user holds a stylus-pen in his dominant hand and a 6-DOm@se in his non-dominant hand. The pen in the
dominant hand sketches and traces the curve or region ofacsuilhe dominant hand is used for precise input while
the non-dominant hand controls imprecise manipulatioris @ows the user to control a set of operations without
interrupting the current operations in each hand. Though the hands are used at the same time, the tasks performed
are not totally independent. They are coordinated taskdttrze t from the use of the two-handed approach. Some
of the earlier research [19, 40, 69, 36] also used a two-lthagproach and their experimental results also highlight
the bene ts of a bi-manual approach as opposed to uni-mantgabction.

In conventional systems, invoking commands are usualljopaed through menus. While the GuTS system
provides menus, it also uses voice inputs to invoke commatidthe commands are invoked through menus, it
disrupts the operation that is performed in the dominantdhaausing task-mode switching and wasting of time.
Geometries are rendered in the data tablet display. Moretahe display, window, and organization of several
controls is discussed later in this chapter. Synthesizesbvautput is used in the GuTS system, which is considerably
different than prerecorded audio output. In synthesizebelp output the dialogues are generated in run-time. This
provides the user proper feedback of the system and errsages while guiding the user on what to do further in

corresponding to real-time interaction, rather than witims pre-recorded audio messages.



Figure 5.4 Mapping of tasks with 1/O devices in the GUTS ayste
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Thus the major tasks in the GUTS system are divided andlalisdd to the several available 1/0 modes, to perform
each task directly, uently and rapidly. Each of these mogess and cons are analyzed and and its applicability in

the GUTS system are discussed in detail in the followingcest

5.3.2 Pen-Based Input

Pros:

— Provides WYSIWYG input interface and direct interaction tawliand sketch (like pen-paper interaction).

— User is already familiar with this type of interaction (liken-paper interaction) - little or no learning

curve.

— Provides additional functionalities, such as 2D mouse mbuston clicks, pressure sensitive tip, and erase

tip at the back of the pen.
Cons:

— Only 2D interface - while good for direct interaction for 2Eating, requires mapping (though minimal)

to trace in 3D.

— Due to the human nature, the draw input using a pen alwaysicegome noise (wiggles). We eliminate

this noise through guided tracing.

A pen in the dominant hand is used to sketch and trace a cueretioe surface. Using a at panel display with
an integrated data tablet allows the user to draw curvesttjiren the monitor as if drawing on a sheet of paper. This
con guration enhances hand-eye coordination, since timel f[p@n input position and the visual geometry output is at
the same point, unlike regular mouse/monitor interfacesr@thand input positions are at a different position from the
visual display.

Figure 5.5 shows several parts of the pen and its functibesli These types of pens are becoming standard as
tablet input has become widely used in recent years. Indisisarch, we did not modify or change any of the hardware
of the pen but applied them effectively for drawing and tngooperations that provide uent and direct interaction.
The two buttons are similar to the left and right buttons om itbgular mouse. The front and back end of the pen
is pressure sensitive. As the user applies certain prestedip is activated for input. The front tip is used for
tracing/drawing and the back tip is used for erasing theeufhis avoids task-mode switching and uses both drawing

and erasing operations interchangeably by just ippinggbs.

5.3.3 6-DOF 3D Mouse Input

Pros:
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Figure 5.5 Pen data tablet and its functionalities

— Provides direct 3D interaction (6-dof).
— Works as an additional input mode, enables the use of norirdonhand and two-handed interaction.

— A good 6-dof device for a desktop based application - reguinenimal physical movement. Unlike 3D-
trackers [such as ascension, polhemus trackers] [2, 8f¢aaires large hand movement in 3D space -

causing fatigue to user preventing use for a prolonged g@erio
Cons:

— Imprecise input - dif cult to control in a precise manner. \ee different snapping mechanisms to achieve

precision from imprecise input.

— While it provides 6-dof control, it does not provide direct Bianipulation as in real-world. This is unlike
real 3D trackers [ascension, polhemus trackers] [2, 8] @llatvs moving in real 3D space to input 3D

transformation.

A key advantage of the 3D mouse over 2D devices is that it glidinect control of manipulating the geometries
in 6-DOF in the 3D environment. The 3D mouse is operated usiagion-dominant hand. The non-dominant hand
is mainly used to control imprecise manipulations such aghide shapes where automated snapping mechanisms
enable precision from the imprecise input. Apart from colfitrg the guide shapes, other coarse level controls such as
transforming the geometries, zooming and scrolling are pésformed using the 3D mouse in the non-dominant hand.
This allows the user to move around the geometries withaugtrting from the current operation that is performed
using the dominant hand. Since the non-dominant hand egseaétan imprecise level, mechanisms such as automatic
shapping are used to achieve the required precision rapidig two input devices on the dominant hand and non-
dominant hand are synchronized to achieve two-handed bualanteraction. This allows the user to perform a
complex task using the coordination of both the hands sanelusly, instead of operating single handedly as in the
conventional mouse system.

Figure 5.6 shows the multiple parts of the 3D mouse in the 20psé\gain in our current implementation, we did
not modify or change any of the hardware of the 3D mouse, kplteapit effectively for performing 3D operations that

provides uent and direct interaction. Eleven differenttons are used as short-cut keys to invoke different funstio
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The functions of these buttons are assigned such that tlsést Hse tasks that are performed using the 3D mouse.
These functionalities provide additional control to thexraiminant hand and help perform additional tasks without

interrupting other operations performed using other mo8eme of the functions assigned to these buttons are:

Toggle the manipulation control to guide geometries
Toggle the manipulation control to regular geometries
Toggle the manipulation control to viewpoint controls
Scale up the size of geometries

Scale down the size of geometries

Lock the translation component

Lock the orientation component

Reset the scene and viewpoint

Figure 5.7 shows additional operations that are performetie 3D setup. In 3D, three translational and three
rotational components are used directly. As the user sedtdfetween the 2D and 3D environment, the 3D mouse
changes its con guration internally and automatically.sélthe mouse buttons reassign their functions accordingly

without any additional user input.

5.3.4 Speech Input

Pros:

— Works as an additional input mode without interrupting otheut modes.
— User's natural mode of communication with little or no leagcurve for the user.
— Fast to input the commands through speech.

— Speech recognition and speech input are slowly becomingresineam feature in the user interface. For
example, the latest Windows operating system "Vista' comtisenhanced speech recognition capabilities
built right into the application. This capability allowsvegal applications and users to use speech input as

one of the primary user interaction mode.

Cons:



Figure 5.6 3D mouse and its functionalities in the 2D mode

Figure 5.7 3D mouse and its functionalities in the 3D mode
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— Though speech-recognition has improved a lot in recentsyséf it is not 100% accurate. Making it not

suitable for mission-critical applications.

— User dependent - though not mandatory, still requires ua@ritg to achieve good speech recognition

rate, and very sensitive to each user's accent, speectyctpeaking style, vocabulary, rate of speech, etc.
— Susceptible to the ambient noise, and causes interrugtiother users in the surrounding.

— User has to remember (all) the input commands, and the lisbwimands may become long making it

impossible to remember all the commands.

— Invoke unwanted commands due to false-recognition. Falsegntion and confusion in recognition be-

tween “similar sounding' words or phrases.

— Not suitable to recognize natural spoken sentences anacérly commands from the recognized speech
(full sentences) is complex. For example, the following seatences - “l would like to draw a semi-circle
of radius 5 centimeters” and “sketch an half circle that i8 frllimeters in diameter” - refers to the same

task, but it is algorithmically dif cult to parse and procethe commands correctly.

As seen above, the GUuTS system effectively uses both thés iserds with pen and 3D mouse input devices.
While both hands are engaged in an operation, to invoke angi@til commands such as the menu operation, the
current operation has to be paused or interrupted. Thentbea@enu operation is invoked, the previous operation is
resumed or started again (‘task-mode switching'). Taskierswitching interrupts the current operation and work ow
of the user and introduces additional unnecessary gap®iddhkign process. Additional speech input mechanisms
provide the additional mode of input without interruptifg tasks performed by both hands and eliminates task-mode
switching.

For example when the left hand is used to transform the gegraatl the right hand is used for tracing, voice
input can be used to issue commands such as “display wirefremdering' (or) “display shaded rendering' to change
the type of display required at that instance. This elingaahe need for the user to browse through the menus or

toolbars to invoke that command and resume the tracing tipera
5.3.5 Flat Panel Tablet Display
Pros:

— Provides WYSIWYG visual output.

— Enables hand-eye coordination, because user sees the ¢ghéfmearisual display directly and at the same

spot.

Cons:
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— Limited resolution and screen display area.

— Not suitable for stereoscopic display.

A at panel display with an integrated data tablet allows theer to draw curves directly on the monitor as if
drawing on paper (refer Fig. 5.2). This setup works as boghitiput and output mechanism, and enhances the
effective hand-eye coordination of the user.

Figure 5.8 shows the con guration of windows in the GUTS sgst Menu commands can be invoked through pen
tablet or voice input. The text display shows the systenissied and I/O device status of multiple modes, such as
which 1/0 modes are on/off, 3D mouse control status, renddrame rate, etc.

The controls at the right-hand side are grouped into cursesaces, and view/render controls. Based on the
working task-mode, these controls are brought to the foremt. Each of these control panels is shown in Fig. 5.9.
These control panels are shown here to specify the arrangerhadditional controls in the windowing system in the

GuTS system.

5.3.6 Synthesized Speech Output

Pros:

— Provides an uninterrupted additional mode of output.

— Does not distract (or) deviate the user's visual focus froendurrent task - unlike error messages or dialog

boxes that disrupt the user's visual focus.
— Natural language feedback to the user - easy and clear tosiadd.

— Synthesized speech output slowly becoming a mainstreaabddyp For example, the operating system
Windows Vista comes with a new human-sounding speech ssigtite This enhanced capability, will

allow several applications and users to use synthesizestlpritput in their day-to-day use.
Cons:

— Ears can get overwhelmed and sensitive after hearing aydéedback for a prolonged period of time.

It is important to provide the user with a steady stream oflffeek and unambiguously inform the state of the
system. In addition to the visual output and cues such ashgapdisplays, symbols and colors, we use auditory
feedback with synthesized speech output to provide additioninterrupted feedback. Speech output also becomes
important when the graphical display of the feedback is nbtent.

For example, when a user tries to revolve a curve without ohgrihe centerline, the system speaks out saying

‘no centerline exists, create centerline’. In some casaisewutput is used as a mechanism to guide the user on



Figure 5.8 Windowing in the GuTS system

Figure 5.9 Control tabs in the GuTS system
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what to do further. This assisting mechanism helps the esenlthe system faster without the need to remember the
sequence of operations. Also, this leads to interfacesatlmt the user to keep his visual attention focused on the
current operation, without the distraction of dialog boresext output windows as in the conventional application.
For example every time there is an error, it is shown in a témtiaw and the user shifts his attention from the graphics
window to the text window to read the message and then hawectsfhack to the graphics window. The additional

auditory output eliminates switching the user's attention

5.4 Technical Speci cations

The GUTS system is written in Visual C++. It uses DirectX'sd2it3D [3] as the underlying graphics library.
The current implementation runs on Microsoft Windows-ltbsgstems. The following table shows the hardware and
software components of the input and output devices of thESE&ystem. This information will be helpful for the

readers in recreating the GuTS system.

I/O Device Software components Hardware components Company information

Pen Data Tablet | Data Tablet Driver from| Wacom www.wacom.com
Wacom

3D Mouse 3D Mouse Driver from| Magellan www.logicad3d.com
Logicad

Speech Input Microsoft speech recogni- Generic Microphone www.microsoft.com
tion APl (or) IBM Via www.ibm.com

voice speech recognition

system

Synthesized Microsoft speech synthe- Generic speaker set www.microsoft.com

Speech Output | sizer API

Table 5.1 Speci cations of multimodal user interaction gmments

5.5 \Variations of Modeling Applications with Multimodal User Interface

The above discussed I/O devices con guration in this chaigtene example of how multimodal user interface
can be used in a modeling system (i.e. the GuTS modeling appyoThe above discussed (geometric) modeling and
multimodal user interface concepts can be extended to etyant different applications. For example, we present two
different applications - "Molecular Modeling System' aridetailed Virtual Design System' (DVDS) - that were de-

veloped by the author that demonstrate how the above disdussdeling and multimodal user interface concepts can
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Figure 5.10 Molecular modeling using “Fishtank VR' inteda

be adopted for different applications. These two exampéesahstrate the applicability and similarity of multimodal

user interface design in this research for various appticat

5.5.1 Molecular Modeling System

First application is a molecular modeling system with nmatidal user interaction in an immersive virtual environ-
ment. In this application [13], we developed an environntbat visualizes and models complex protein structures,
1,000s to 10,000s (or more) of atoms per molecule. This fveorie allows modeling and manipulating molecular
structures through intuitive natural interaction, dineanipulation in 3D, and a time-ef cient interactive enviroent.

Figure 5.10 shows an user interface setup very similar ta@h&S system, but with a couple of differences -
use of a 3D stereoscopic display and use of a regular 2D mastezad of a pen tablet. Extending this research to a
large immersive scale, we developed a detailed compleximmudial environment for molecular modeling. Since the
stereoscopic display provides depth perception (compara®D display), it helps the user to visualize, analyze, and
understand complex molecular and protein structures in BDease.

Figure 5.11 shows different components that are used imtblscular modeling system. The readers will notice
the similarity of the different user interface componergsaeen this system, the DVDS system (refer Section 5.5.2),
and the GuTS system. Some of the differences are use of hezdinty and additional controls for secondary users
allowing collaborative modeling and visualization betwaeultiple users.

Figure 5.12 shows the detailed system architecture of tHeaular modeling system. In this case three dedicated
computers were used for different tasks. First, a dediagttahics hardware for 3D stereoscopic rendering. Second, a
dedicated computer for processing input 3D trackers anigessfrom the gloves. Third, a dedicated sound server for
processing the audio input and output. All three computersannected through a network and work synchronously

and seamlessly with the user's interaction. While the oVe@icept of the multimodal user interface is similar to



Figure 5.11 Different components in the molecular modesiystem

Figure 5.12 System architecture of the molecular modesgesn
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the DVDS and GuTS systems, this application setup demdestthe scalability of this concept to achieve a high
performing distributed environment. More importantly, at the applications (the GuTS System, DVDS, and the
molecular modeling system) the underlying analysis andpimagpof different available I/O devices to the tasks that
need to be performed remains the same. This demonstratebehzoncept of this multimodal user interface design
is scalable and it can be applied, modi ed, extended to amglrar of applications with varying 1/0 devices.

Figure 5.13(a) shows the user modeling in front of the imierdisplay. Figures 5.13(b) and 5.13(c) show the
virtual hand corresponding to the user's real hand. Reamer®bserve the virtual ngers in the virtual hand exactly
replicate the real ngers of the user. In the following sens, we present how the tasks and I/O devices are mapped

for this application.

5.5.1.1 Set of tasks

The rst column in Table 5.2 lists the major tasks that are ownly performed in a molecular structure visu-
alization, modeling and tting program. The word (F) in cala 1, represents that the particular task is a ltered
task of some other task. For e.g. 3D position is a ltered apien of 3D position and orientation, where orientation
parameters are ltered out. Similarly, “Zoom In” task is @efred operation of 3D position, where the translation of
camera viewpoint is allowed in only one dimension. It is imtpot to mention that in this section we focus on the
task, rather than how or what technique is used to perfortrpéudicular task. For example, we focus on task “select
an object”, and not how it can be selected such as ray castifiggion detection, or spatial proximity.

Second column shows the required degrees of freedom fortaskhThird column shows the nature of task, i.e.
continuous (C), discrete (D), repetitive (M), and need &iguidance (V). The Tag (V) means, during that particular
task the user need to visually see the changes to perforntas$iatcorrectly. In short, they are visually dependent
tasks. Forward slash, for e.g. C/D means that task can ber eimtinuous or discrete. Having grouped the tasks, the
next step is to identify the best suitable I/0O modes to perfeach of these tasks that provides natural, intuitive and

effective interaction to the user.

5.5.1.2 Matching tasks with I/O modes

Our approach to identifying the best suitable mode is tagassisimilar mode that a user will commonly use in a
real world scenario. Matching tasks with multiple /O modewotally different than mapping the keyboard and mouse
events in a desktop application. It is mainly because inimoltial interaction, the number of I1/O devices increases
several fold, dimensionality of the I/O devices also chang@nsiderably and the I/O modes vary dramatically. The
available input devices and its DOF and its nature can bexllias follows:

Once the DOF, the nature of the devices, and tasks are faueeésy to nd the most suitable I/O modes for the
task. The fourth column in Table 5.2 lists the most suitaliierhodes for each task. Table 5.4 provides the physical

connection between the human part, /0 devices, and thgresbstasks.
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Figure 5.13 User modeling molecular structure in front @ itnmersive display
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Tasks DOF | Nature I/O Mode
Camera Navigation

3D Position, Orientation 6 Cv TG
3D Position (F) 3 Ccv TG
3D Orientation (F) 3 Ccv TG
Zoom In/Zoom Out (F) 1 C/D,V TG/A
Look Along X Axis 1 D A
Center and Zoom Atom H 1 DM N
Geometry Navigation

Go to Atom H 1 D A
Go to Previous Atom 1 D A
Go to Next Residue 1 D A
Modeling/Editing

3D Position, Orientation 6 Cv TG
3D Position (F) 3 Ccv TG
3D Orientation (F) 3 cv TG
Torsion Angles (F) 1 Ccv TG
Delete Atom/Residue 1 D A
Apply/Cancel Changes 1 D A
Undo Last Change 1 D A
Geometry Selection

Pick Atom (by pointing) 1 DV TG
Pick Atom (by name) 1 D A
Geometry Query

Get Distance 1 D A
Get Atom Information 1 D A
Feedback To User

Error Report 1/2/3 | DICV S
Statistics 1 DV S/
Visual Cues 1/2/3 | CV I

Table 5.2 List of commonly performed tasks

C: Continuous, D: Discrete, V: Visual, F: Filtered, T: Spaffrackers, G: Glove
Gestures, A: Audio Input, N: Natural Language Input, S: $pe@utput, |: Immersive
Display



I/O Devices DOF | Nature
Spatial Trackers (T) 6 CVv
Gloves (G) 1 D
Audio Input (A) 1 D
Natural Language Input (N) 1 DM
Immersive Display (1) 3 CVv
Synthesized Speech Output (S) | 1 D

Table 5.3 Available 1/0O devices, its DOF and nature

Human Part I/0O Devices Tasks

Left hand Tracker, Glove | Camera navigation

Right hand Tracker, Glove | Geometry edit/select

Head/body Tracker Camera navigation
Mouth \oice input Audio commands
Eyes Visual display | Visual feedback
Ears Speech output | Auditory feedback

Table 5.4 Physical connection between human parts and Xxé&e
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Figure 5.14 Matching tasks and modes

In short, camera navigation operations are grouped as nviele', geometry editing and selection operations as
“editmode’. Then by default, left hand for “viewmode', righand for “editmode’, head/body for the ne control of
“viewmode', and wand in the secondary user can be used @ithdewmode' or “editmode’. The mode of each hand
can be easily changed from “viewmode' to "editmode' and vieesa. When both the hands are in the “editmode’,
both hands can be used to pick two different atoms simultasigo In this mode, it is easy to pick two atoms and
issue a voice command such as “get distance”, to get thendistaSimilarly, as the user feels appropriate, different
con gurations can be set dynamically in real time. Also atigatar mode can be turned on or off. For example, by
issuing voice commands such as “start head tracking' op l#ad tracking', head tracking can be started or stopped.

Figure 5.14 shows the overall procedure of matching thestagkh I/O modes and establishing the physical
connection with the user. Currently these steps are comedunanually. This can be automated by knowing the
list of tasks, availability of the number of modes and theindtionalities, and its nature. Once these are known
the appropriate I/O mode can be assigned automaticallyson ¢éask. Other parameters such as relative/absolute,
precise/coarse, natural human practices, etc., play araksigning the tasks. For example coarse actions arenasisig
to non-dominant hand and precise actions are assigned tmdonhand.

The current approach works well and is easy to customizegfegral operations and con gurations. The integra-
tion of multiple modes for a very complex interaction enwinoent needs a sophisticated failure handling system. For
example if any of the modes fail, without much disturbancéhmuser, the system should be able to infer the input

from the other available modes.

5.5.2 Detailed Virtual Design System (DVDS)

The second example application is "Detailed Virtual Desgystem' (DVDS) [12]. This application contains
a framework for detailed geometric modeling in a multimod@tual environment. Detailed design involves the
development of a detailed model of the product. This incdude ning the features, determining their dimensions,
tolerances, etc. Almost all of the CAD systems are develdpedietailed design. But due to the interface and

interaction techniques, 1D and 2D 1/O devices, they makpeinaodeling a time-consuming and tedious task. The
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Figure 5.15 Layout of DVDS architecture

nature and architectural development of the DVDS providgéi dimensional multimodal interaction between the
designer and the system, thus making the design process &t easier.

The DVDS system supports multiple input-modes (hand metigestures, and voice commands), and multiple
output-modes (stereoscopic rendering, and synthesizsthfsound output). Some of the important features of this
framework include: multimodal interaction between theigiesr (human-being) and system (Bene ts: Increased
communication between the designer and the system), rfeuligsigners simultaneously collaborate in the same
environment (Bene ts: Effective collaboration betweersid@ers, avoids ambiguity and reduces design time), and
seamless integration with the existing industry standakd Gystems (Bene ts: Avoids data translation and paves the
way to merge novel VR technologies to embrace well develdpeastry standard CAD knowledge).

Figure 5.15 and Fig. 5.16 show the system architecture of ®MDVDS is an intermediate software layer, which
resides between the hardware and the commercial CAD syd®D.S' command parser module synchronizes the
multi-modal inputs, which arrive simultaneously from difént kinds of input devices. It parses the input commands
and redirects them accordingly to the CAD system to actieate geometric manipulations and/or to the graphics
engine for display and navigation operations.

You will notice the similarity between the GuTS system, neolar modeling system, and the DVDS system
architecture. Some of the key differences are: in DVDS, fisecommercial CAD system as the underlying geometric
engine, use of an immersive stereoscopic 3D display, anérggesture recognition. Also, in DVDS the modeling
is done differently than in the GuTS system. In DVDS, the usanipulates the control points and parametric values
directly to simulate the CAD modeling system, but using diraultimodal user interface.

Table 5.5 shows the generic sketch entities that are suggportDVDS. Each sketch entity has a set of control
points, which help to change the dimensions and modify tlapetof the sketch, and a handle, which is used to

transform the sketch entity. The handle is mostly at the ggnaxcenter of the sketch entity, as shown in Table 5.5.



Figure 5.16 DVDS - System architecture
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Table 5.5 Generic sketch entities and its control pointstenrdile

Figure 5.17 Sequence of feature manipulation operationenmentional CAD systems

Figure 5.18 Sequence of feature manipulation operatioB¥/iDS
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Figure 5.19 Gestures in DVDS

Due to the architectural design of the conventional CADayst interface, the sequence of operations in CAD sys-
tems is unidirectional, as shown in Fig. 5.17. On the othedhan DVDS the sequence of operations is bi-directional
(refer Fig. 5.18) taking advantage of the multiple modes.dxample this allows the designer to dynamically change
the feature de nition and sketch parameters simultangousing both his/her hands, while changing the viewpoint
orientation using a different mode of input.

In DVDS, a data glove is used to capture detailed movementgyefs and recognize nger gestures dynamically
in real-time. Figure 5.19 shows different gestures and theipping to geometric and viewpoint manipulations. The
gestures are grasp, release, point, ring and okay. Gragedsta grab the object or viewpoint to orient in 6 degrees
of freedom (DOF). Release is a noti cation of end of graspjegture. Point gesture is used to relocate the model
or select a small point by pointing at it. This gesture is uk&f manipulating tiny features. Ring gesture is used to
reshape, modify the feature by pulling, pushing, twisting tontrol points. Gesture okay is to con rm the action.
The primary operations are freeform transformation andtramed transformation of the part or viewpoint. Usually
the viewpoint is changed so that the accuracy of the geonetnaintained. Another kind of operation is zoom in
and zoom out. These operations are manipulated througtt tised motion and gestures. Apart from gestures, voice
input is also used for invoking commands.

Figure 5.20 shows the user in front of the immersive largeldisperforming modeling. In this gure you will
notice oating 3D menus (to replace 2D menus on the desktapesys) on the right side of the picture, providing
menu controls to the user in the virtual environment.

These two example applications demonstrate that the ctsoépmultimodal user interaction used in the GuTS
system can be adopted to (a) a wide variety of applicatioasar@) with a wide variety of application-speci c /O
modules, (c) with a wide variety of application-speci ¢ tois1 hardware devices, and (d) with a varying degree of
complex distributed environments. In fact, the GuTS systeeif can be extended to use the following components:

large immersive display systems that use 3D stereoscogitadi gloves for nger gesture, 3D trackers for hands and
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Figure 5.20 User in front of DVDS immersive display

head tracking, and use of large-scale touch-enabled twddthimmersive desks for replicating life-size draftinglan

modeling platforms.
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Chapter 6

Results

In this chapter we present examples of curve geometries Brelface models that we created using the GuTS
system. These examples demonstrate several features GLiif® approach that are implemented in the GuTS sys-
tem. Also, readers can observe that in addition to GuTSispeperations, traditional modeling operations, such
as geometry mirroring, extruding, revolving, and loftingesations, are extensively used in creating these examples

Some of the key points to observe from these examples are:
1. Use of guide geometries to create new geometries throagimg
2. Create new geometries easily without knowledge of theetiyithg geometric representation
3. “What You See Is What You Get” (WYSIWYG) modeling approach
4. Create complex geometries easily and rapidly throughiphellguide geometries
5. Create precise geometries that are the exact replica(top) of the guide geometries

6. Create geometries the same way regardless of the unagggbmetric representation

6.1 Examples of Curve Geometries

Figure 6.1 was created using circular guide shapes and bptcal guide shape. This drawing was completed
in less than 30 seconds. As this example demonstrates, BUM& approach, even a complex shape can be created
rapidly and easily by using only simple guide shapes. Indhésving only half of the diagram is sketched while the
other half is mirrored. Also, most of the circular arc segts@me connected such that they main@fncontinuity pre-
cisely. Since the GuTS approach provides several snappiehamisms, these aligning operations are done precisely,
rapidly and easily.

Figure 6.2 shows an illustrative sketch of a conceptual aadeh All the freeform curves - except the arcs and
ellipses - are traced from French curves. Each curve is ghdtref stitching several small pieces of curves together.

Yet, it is impossible to locate the stitch regions. Smoosisnef the curves is quite evident. Due to the use of several



Figure 6.1 lllustrative sketch of a moose head
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Figure 6.2 lllustrative sketch of a car

automated stitching mechanisms, as discussed in previaysears, the smooth! connectivity is maintained between
multiple pieces. The small circular dots in this picture #re intersection (connection) points between the curves.
While the sketch of the moose head (Fig. 6.1) and the illuseaketch of the car (Fig. 6.2) are concept shapes, the
geometries used to create these shapes are preciselyfi@retie guide shapes (such as circles, ellipses, and French
curves), and the traced curves are aligned precisely usiregga snapping mechanisms.

Figure 6.3 shows another example of a curve geometry. Irtiaddo French curves, several other guide shapes,
such as an ellipse, circle, and line segments, were alsaosédtch this geometry. When designing ship hulls, instead
of French curves, the standard “ship-curves” can be useddigu the hulls precisely. The small circular dots in this
picture are the intersection (connection) points betwesaral curves.

Figure 6.4 shows an illustrative sketch of a sword. All theeform curves were drawn using a French curve.
Fig. 6.4(a),(b),(c), and (d) show the progress of the diagrdhe actual French curve that is used can be seen in
these gures. Fig. 6.4(e) shows the completed sketch. Apmwiet pivotal snap is represented by the circle drawn
with double lines (Fig. 6.4(a)) at the point of connectiotween the guide shape and the regular curve. Similarly, the
crossed box in Fig. 6.4 (b) and (c) shows that a tangentialition snap exists between the guide shape and the regular
curve. These visual cues dynamically provide direct feekllod the snapping conditions to the user in real-time.

Figure 6.5 is an illustrative sketch of a ower and plant wihighows several features of the GuTS approach. First,
as shown in Fig. 6.5(a), a circular guide is positioned dedgiht places and copied fully to create new regular curves.
Yellow represents the guide curve being copied to form aleequrve. Green lines represent regular curves but are
not selected. Figure 6.5(b) shows elliptical guide curdased at different locations and copied to create new regula
curves which form the ower petals. The blue ellipse is thédgucurve and the yellow curve is the recently copied
curve. Since all these circles and ellipses are createdllinttiey are copied in a single step instead of tracing all
over the geometry. Figure 6.5(c) shows the completed iilitise sketch of the ower and plant diagram in red. Red
represents the curves that are selected for further operdt this case, as shown in Fig. 6.5(c), the selected regula

(red) curves are converted to guide curves (shown in blue)v the whole ower and plant sketch itself is a guide
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Figure 6.3 lllustrative sketch of a boat



101

(a) curve geometry is traced from a French curve (b) ...tracing further...

(c) ...tracing further... (d) compled half part of the sword

(e) after mirroring the half, the resulting completed sword

Figure 6.4 lllustrative sketch of a sword
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geometry. It can now be used as a guide shape to create addligeometries. Figure 6.5(d) shows this whole set of
guide geometries used for tracing. The tracing portion @shin yellow as it progresses.

Figure 6.5(e), the sketch to the right, shows the complétetth that was created by tracing the outer boundary of
the guide shapes (shown in blue). Figure 6.5(f) shows dyatdlerent and artistic form of the ower and plant which
is drawn using the same guide shapes. These drasticablyetitf sketches illustrate the versatility of this approd&sh
simply using these guide shapes, several varieties offs®tan be easily created from imagined ideas. This example
also shows that these arcs and curves are precisely coftfealjgh in pieces, to retain the precision of the geometries
during several stages.

Figure 6.6 shows the diagram of a guitar model. Fig. 6.6(ajvshas it was drawn. A French curve was used
to draw the body of the guitar. A straight line tool and otharved tools were used for the neck of the guitar.
As mentioned earlier, the blue crossed box represents thblisbment of a tangential snap condition between the
guide curve and the regular curve. Fig. 6.6(b) shows the tetegbguitar diagram. The small circular dots show the
intersection points between multiple curves. As we will sger in this chapter, this diagram is used as a base to create
a 3D guitar model.

Figure 6.7 shows the diagram of a pen model. Fig. 6.7(a) skewswas drawn. A French curve was used to
draw the curved body parts of the pen model. A straight liré Wweas used to draw the clip portion. As mentioned
earlier, the small circular dots show the intersection fsetween multiple curves. Fig. 6.7(d) shows the completed
pen diagram. We will see later in this chapter how this diagigused as a base to create a 3D pen model.

Figure 6.8 shows examples of creating curves geometrid®iltGuTS system using Bezier representation. Fig-
ure 6.8(a) shows two Bezier curves represented as a single sagment. It also shows the curve segment's corre-
sponding control polygon. Figure 6.8(b) shows after the usteractively traced partly over the two Bezier curves
(yellow segment). In this case, the starting point on thé agrve and the ending point on the second curve are
completely random. The user traces over this Bezier curgmeat interactively as if it is a single curve - exactly
like Subdivision representation. In these diagrams, the#robpolygons are made visible to demonstrate tracing is
performed over Bezier curve segments. In the GUTS systemstirecan turn off the visibility of the control polygons,
rendering only the resulting Bezier curve. The user will notice any difference and s/he will perform the tasks ex-
actly the same way regardless of the underlying geometpiesentation. This example demonstrates that the GuTS
approach allows the same user interface to be transpartesgitiregardless of the underlying geometric representatio
Figure 6.8(c) shows the newly created Bezier curve segnmemt the traced region shown in Fig. 6.8(b). The newly
created curve contains two new Bezier curves that are repies as a single curve segment with its corresponding
new control polygons. Figure 6.8(d) shows another exantye dontains multiple, in this case four, Bezier curves
represented as a single curve segment. As the user tragethevairves randomly (from a random starting point to
a random ending point), the resulting new traced curve isvahin Fig. 6.8(e). Note that the newly formed Bezier

curves still maintairC® continuity from the original guide curve.
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(a) multiple circular guidegb) elliptical guides are used to credty whole sketch is copied and convertl tracing along the guide to
are used to create the sterthe petals into a complex guide (shown in blue) create new geometry (shown

in yellow)

(e) the completed new traced geometry (shown in {f¢lusing the same guide, but traced differently pro-
low) duces totally different resulting geometry (shown in
red)

Figure 6.5 lllustrative sketch of a ower and plant
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(@) (b)

Figure 6.6 Diagram of a guitar
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(a) curves forming the body of the pen traced from a Frenchecurv

(b) pen handle and other parts of the pen are traced

(c) fully traced diagram of the pen aligned along the ceatés-line (shown in green) - small blue circles represent

the intersection of the curves, and the yellow circle repmésthe geometric center of the selected curves

(d) completed diagram of the pen

Figure 6.7 Diagram of a pen
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(a) two Bezier curves represented as a sirfg)euser interactively traced over two Bezie) newly traced curve segment consists of
curve segment and its corresponding contiaives with random start and end points amib curves (shown in yellow), and its corre-

polygon it is a single curve (shown in yellow) sponding new control polygon

(d) another example where four Bezi@) newly traced curve segment consists of
curves are represented as a single curve segtiple curves - note the resulting curve

ment and traced randomly maintainCg continuity from the guide curve

Figure 6.8 Creating curve geometries (using Bezier reptaten)
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(a) aFrench curve is being used to trace jflayt base of the earphone (s) shows half-completed ear-
of the earphone being traced from a circulgshone sketch

guide shape

(d) mirrored to complete earphone model and
then a wire is added to the base using freeform
tracing and a smoothing operation was applied

Figure 6.9 Creating an headset/earphone using various ghapes



108

Figure 6.10 Guitar model

Figure 6.9 shows creating an headset/earphone model ufi@gdt guide shapes - French curve, circular, ellip-
tical, line, guide shapes, and freeform tracing. Figurés§.8hows a French curve is being used to trace the geometry
that connect the earbuds and the base. Figure 6.9(b) shawaikcguide shape is being used to create the base of
the earphone. Figure 6.9(c) shows after the earbud and éaked are created using elliptical and line guide curves.
Figure 6.9(d) shows the completed earphone model afteorinig and adding the wire to the base using freeform

tracing.
6.2 Examples of Surface Geometries

The rst sets of surface models in this section show how sigrfgeometries are created using curve diagrams
designed in the GUTS system. These examples demonstrataitiias created by the GuTS approach can be further
easily used to design surface geometries. These examptedahonstrate that the conventional modeling operations,
such as extruding, revolving, lofting, and mirroring ofiegmas, work well along with the GuTS operations. Figure 6.10
shows a guitar model which is an extruded object of the gdigggram shown in Fig. 6.6(b). The top and bottom faces
of the guitar are tessellated and rounded along the edgésetthg completed model a smooth nish. Though creating
models through extrusion is not new, the curves designetkitGuTS approach can be used to create 3D surfaces by
using the conventional modeling approaches.

Figure 6.11(a) shows three curves that are drawn using ti&Guystem. Fig. 6.11(b) shows the lofted surface of
a bottle model, which is created by lofting through the carsieown in Fig. 6.11(a). This example shows another way
of using a traditional approach - lofting - to create 3D scefanodels from the curves designed in the GUTS system.

Figure 6.12(a) shows a pen model that is created using thie dimgram shown in Fig. 6.7. Several curves are used

to create the various pieces of surface geometries to foermtd shape of this pen model. Conventional modeling
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(b)

Figure 6.11 Bottle model
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operations, such as extrusion and revolution operatioeste these surface geometries. Fig. 6.12(b) shows the pen
model with transparent rendering to display the internahgonents of the model.

The previous three gures showed how curve geometries etdatthe GuTS system can further be used to create
surface geometries. The following gures show the two typéfracing operations that are performed in the GuTS
system: zero-point tracing, and thick-brush tracing. Ehesamples also demonstrate how these two types of tracing
are interchangeably used over single, as well as multiplielegsurfaces to create complex geometries easily, djrectl
and rapidly.

The series of gures in Fig. 6.13 illustrates the use of zpoint tracing to trace a freeform leaf model in a single
step. Figure 6.13(a) shows the extruded freeform surfagko(y) in wire-frame rendering while the traced curve is
shown in red. Figure 6.13(b) shows the same in shaded renddtigure 6.13(c) displays the model once the traced
curve is inserted into the surface geometry. Once this draceve is inserted, the actual surface geometry is divided
into two portions, inside and outside. Then the inner partibthe leaf is highlighted in red. Figure 6.13(d) shows
only the required leaf portion, after the unwanted outsitiéase geometry is removed (deleted). Figure 6.13(e) is the
same surface but in wire-frame rendering to provide theildetbong the boundary.

The series of gures in Fig. 6.14 is another example of zevo¥ptracing over an extruded surface. Figure 6.14(a)
is the result of the rst character being traced and inserkgdure 6.14(b) displays the two characters already traced
inserted and removed while the third character is just taéégure 6.14(c) is the result of the third character being
inserted and erased. Figure 6.14(d) shows the surfaceadiftae four characters are cut out. Figure 6.14(e) shows a
freeform curve traced from one surface boundary to anotiréace boundary and inserted to split the surface geometry
into two pieces. Then, the highlighted (red) portion of aod is removed to achieve the nal surface geometry, as
shown in Fig. 6.14(f). The sequence of these images showshthaiser can trace directly over the surface, without
any knowledge of surface geometries or the underlying géymepresentation, and create complex shapes easily and
directly.

Figure 6.15 shows the sequence of images that describeghigorr of a pair of eyeglasses using zero-point tracing.
This is another example of how zero-point tracing can be tseésign geometries. In Fig. 6.15(a) the rim portion of
the eyeglasses is drawn over a freeform surface. For Fi§(l§).the curve is inserted and divided into two regions,
highlighting the inner surface region in red. Figures 6¢c1%nd (d) show what remains after the unwanted outer
surface portion is removed, in wire-frame and shaded rémgleespectively. Mirroring this one side of the eye-glass
along the middle portion of the frame produces the otherasidie eyeglasses. Figures 6.15(e) and (f) show the nal
eyeglasses after the mirror operation is completed ancereddn wire-frame and shaded mode respectively.

Figure 6.16(a) shows a traced Bezier curve segment (fronBE¢c)) was extruded to create a 3D surface, which
then had a zero-point tracing performed on it (Fig. 6.16(B)jure 6.16(c) shows the traced region erased from the
surface. In Fig. 6.16(d) another zero-point tracing openatvas performed on the surface. After erasing the traced

region, the resulting nal surface geometry is shown in Eid.6(e).
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Figure 6.12 Pen model

(b)
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(a) shows zero-point tracing of a leaf sketch ofbp same as in Fig. 6.13(a), rendered in shaded

surface mode

(c) traced curve is inserted into the surface &af)d shows the required leaf pofe) same geometry as in Fig. 6.13(d) but ren-
the corresponding region is selected (showrian after the unwanted surface gégered in wire-frame mode to show the details

red) ometry is removed

Figure 6.13 Creating a leaf model through zero-point trgcin
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(a) shows character "G’ is traced and inserted into an estt(lo) shows characters "G'and "u' trimmed from the surface, and

surface character "T'is just traced

(c) shows after the character "T' is trimmed from the surface  (d) shows the word "GuTS' trimmed from the surface

(e) shows part of the freeform surface is being trimmed thraaugh (f) shows the nal surface geometry

zero-point traced curve (shown in red on the left side)

Figure 6.14 Freeform zero-point tracing of characters



(a) the rim portion of the eye-glass is traced off@r the traced curve is inserted into the surface

a surface (shown in red)

(c) the rim portion after the unwanted outer part is removed (d) same as Fig. 6.15(c) rendered in shaded mode

(e) mirror the half portion tdf) completed eye-glass model rendered in

form the full eye-glass model shaded mode

Figure 6.15 Sun-glass model through zero-point tracing
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(a) Bezier curve is used to credt®) traced curve is inserted into tlje) the traced region is erased from
an extruded surface, and a curvesigface and the traced region is highe surface

traced over this surface lighted (shown in red)

(d) another curve is traced and ife) the resulting surface after tif§ shows another example, whi(g) resulting ower shaped surface
serted into the surface and the regiomced region is erased the surface is same, but a diffefter the unwanted surface region is
is highlighted (shown in red) ent curve in the shape of a oweemoved

is traced and inserted into the sur-

face

Figure 6.16 Creating surface geometries (from Bezier @)rve
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@ (b)

Figure 6.17 Tracing through thick-brush

Figure 6.16(f) shows another example of a surface extruded & Bezier curve segment (from Fig. 6.8(e)). A
ower-shaped zero-point trace was performed on this 3Dagigrfand the traced region is shown in red. Figure 6.16(g)
is the nal surface in wireframe rendering after the traceglion is trimmed from the extruded surface. The above two
examples demonstrate that 3D surfaces are created frorar®erie segments exactly the same way as if interpolation
subdivision curves were used. Regardless of the curvegeptation, the resulting surface geometries and surface
operations remain the same in GuTS approach.

So far, the examples showed different models created by tisenzero-point tracing operation. Figure 6.17 shows
a thick-brush tracing operation where a thick brush withrerguired thickness is used to trace over a surface. As the
user traces, a region of the surface is traced, precisedgtigd the boundary at every cycle of the drawing process.
In Fig. 6.17(a) a thick-brush was traced over a simple towntase and the selected portion of the surface is shown
in red. Figure 6.17(b) shows the unwanted outer portion efgtirface was removed. While the geometry torus
itself is simple and precise, the haphazard tracing operatver this simple object creates a more complex surface.
This complex piece of surface is easily traced from simptag@eometry, highlighting the advantages of the GuTS
modeling approach. If this same model was modeled usingectional modeling systems, the user would have to
draw multiple complex curves that form the boundary UV cgreéthe nal geometry and then loft these curves to
get the nal geometry. On the other hand, in the GuTS approaltthese operations are performed in a simple single
tracing operation directly over the surface.

Figure 6.18 shows the sequence of images in designing a ladplnFigure 6.18(a) displays the initial curves that
were used to revolve and create the surfaces that are shdvig. i6.18(b). Only one quadrant (i.e. 90 degrees) of the
lamp surface was revolved and the detailed editing was dorbkig part. At a later stage, by mirroring this quadrant,

the full symmetric model was created. Figure 6.18(c) shawestitaced portion, highlighted in red. In this case both
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zero-point and thick-brush tracing were used. Figure @ljI8tows the same but in shaded mode. Just by looking at
both pictures, it is not easy to identify which portion of tiegion is traced using which tracing option. Figure 6.18(e)
shows the surface after the unwanted selected region wasveein Figures 6.18(f) and (g) are the results of the
mirroring operation and the erection of the nal lamp mod@&lhey are rendered in shaded and wire-frame mode
respectively to highlight the details.

Figures 6.18(h), (i), and (j) are the same quadrant of thelemadel, shown in Fig. 6.18(b) but used to create a
different design of the nal geometry. This emphasizes thatising the same initial surface guide geometry, several
different detailed models can be created just through teeofiglifferent tracing operations. This provides the user
exibility to design multiple geometries from the initialdse geometry in a short period of time.

The above presented surface examples use only tracingtiomsraver disjointed surfaces. Figure 6.19 shows a
new, interesting, useful and time-saving tracing operdatidhe GuTS approach. The sequence of pictures in Fig. 6.19
shows the ability to trace, both zero-point and thick-brtrsicing, over multiple guide shapes, as if tracing over a
single surface. In Fig. 6.19(a) three geometries - two hehgiscal and one semi-cylindrical surfaces - are intensgct
each other. The dynamic intersection algorithm nds theiisécting triangles and intersecting curves between these
geometries in real-time. Once these multiple geometriesrede into guide geometries for tracing, these interggctin
curves are inserted into the geometries. Figure 6.19(aystite geometries in wire-frame rendering with two regions
traced and selected while the third region is just traceguriéi 6.19(b) displays after the third region on the right and
the fourth region on the left (not visible in picture), andchick-brush tracing in the middle is inserted over multiple
geometries. The selected regions of the surfaces are shmowed.i After the unwanted selected surface regions and
other side of the hemispherical surfaces are removed, thieg@ometry is shown in Fig. 6.19(c). Such a complex nal
surface geometry is easily and directly modeled using thESzapproach but it cannot be modeled with the same ease
using other geometric modeling programs.

Figure 6.20 shows the sequence of pictures during the oreatia cooking spatula. In this example, one extruded
and one revolved surface were used. Both these surfacesweel® into guide geometries. Then, zero-point tracing
was used to trace the desired shape of the spatula over bothetyges. Figure 6.20(b) shows the stage where one
region of the surface was traced but before the second taged is inserted. Figures 6.20(c) and (d) are the result
of both surface regions being traced and inserted. Theyeadered in shaded and wire-frame mode to highlight the
details of the geometry. Figure 6.20(e) shows the nal geoyrefter the unwanted surface regions were removed and
mirrored to create the other half. Figure 6.20(f) shows tiamleted nal geometry in wire-frame rendering mode.
This example also demonstrates the capability that maltjpide shapes can be positioned and viewed by the user
before the surface regions are traced. This allows the asastalize partly how the nal shape will look before the
surface regions are traced - providing the user with aduiligisual feedback during different stages of the modeling

process.



(a) the initial(b) curves are revolved to forift) different parts of théd) same as ife) resulting surface after
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input curves one quadrant of a lamp model surfaces are traced usiigg. 6.18(c), rendered ithe traced regions are erased

both zero-point and thickshaded mode
brush tracing (showin in
red)

(f) mirrored the quadrant surface (g) same as Fig. 6.18(f), reifh) starting with the same in(i) uses different zero-
form the complete lamp model  dered in wire-frame tial model as in Fig. 6.18(b) point and thick-brush trac-

ing operations

() shows the resulting totally

different lamp model

Figure 6.18 Lamp models



(a) shows multiple geometries and two regions @jeshows additional two regions traced on the hemi-
traced and inserted into the semi-cylindrical surfasgherical surfaces and a thick-brush traced over all

three surfaces in the middle (shown in red)

(c) shows the resulting complex abstract surface after all

the traced regions are erased

Figure 6.19 Abstract model - Designed through multiple gisbapes
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(a) handle igb) handle is inserted into a surface and the lfct-after both handle and bottom part @) same as

traced over onéom part of the spatula is drawn over the sectimel spatula inserted into both the surfaEés. 6.20(c)
surface surface (shown in red) in wire-frame
rendering

(e) Unwanted surface regions are erased(f) completed spatula model rendered in wire-frame mode
and mirrored to form the complete spatula
model

Figure 6.20 Spatula (cooking utensil) model
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Figure 6.21 shows the sequence of pictures in creating awapé& model. Figure 6.21(a) shows the curves
that created the surfaces shown in Fig. 6.21(b). Since sh&és symmetric object, only half of the nal geometry
was designed and later the other half was mirrored. Figut&(6) shows the portions of the surfaces were traced.
As mentioned earlier, it is dif cult to identify which typefdracing operation was performed on these surfaces.
Figure 6.21(d) shows the remains after the unwanted partibthe surfaces were removed. Figures 6.21(e) and (f)
show the model after the other half was mirrored, in wirerfeaand shaded rendering respectively. Figure 6.21(h)
shows the complete geometry after the top portion was esttudigures 6.21(g) and (i) are the same as the models
shown in Fig. 6.21(f) and (h), but only in red.

Figure 6.22 shows the sequence of pictures in creating alteelwFigure 6.22(a) shows the curve used to create
the surfaces shown in Fig. 6.22(b). Figure 6.22(b) showsrdeed region in red. Since this is a symmetric object,
only one quadrant of the nal geometry was designed and theremaining portion was mirrored. Figure 6.22(c)
shows the model after the traced portions were removed.r&ig22(d) was the result of one mirror operation while
Fig. 6.22(e) shows all four quadrants were mirrored. Fig@2(f) and (g) display the completed wheel model in
wire-frame and shaded rendering respectively.

The GuTS system also edits models that are designed in otiséing (commercial or non-commercial) modeling
systems through a set of standard le formats. Figure 6)28{aws the head model that was imported into the GuTS
system as a standard mesh le format called "object le forfadf)'. In Figure 6.23(b) the ears were removed and a
new portion of the head was traced and selected. Figure$ch.@3d (d) show the nal face mask after the selected

surface region was removed and rendered in shaded andrairefendering mode.



(a) initial input curves (b) curves are revolved ar(d) additional features ar@) traced regions are
extruded to form half of théraced over the surfacerased from the surface

bumper model (shown in red) geometries

(e) surfaces are mirrored to create otff¢rresulting bumper model rendered in shadgll same as in Fig. 6.21(f) shown in

half of the bumper model mode red at a slightly different angle

(h) mid top portion of the bumper is extend@yl same as in Fig. 6.21(h) rendered in red at a

to form the complete bumber model slightly different angle

Figure 6.21 Car bumper model
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(a) initial input curve  (b) input curves are revolved one quandrant and different
regions are traced using zero-point and thick-brush teacin

(shown in red)

(c) traced regions are erased from the surface  (d) mirrored once to form half of the wheel

(e) mirrored again to form the full wheél) completed full wheel model in wire-fram@) completed full wheel model ren-

model rendering dered in shaded mode

Figure 6.22 Car wheel model

123



124

(a) imported surface model théi) thick-brush tracing was done {o) traced region is erased from tf@ resulting nal geometry ren-
was modeled in another modeielect a region of the model (shownrface geometry dered in wire-frame mode

ing system in red)

Figure 6.23 Face mask model
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Chapter 7

Conclusions

In this chapter, we summarize the GuTS modeling approaehGitrS system and the contributions of this re-
search. This will be followed by a discussion of the genénaithtions of the GUTS approach and our implementation
as well as opportunities for future research.

Freeform modeling is a core part of geometric modeling, eafborm models are dif cult to specify and manipu-
late interactively. Hence, working with freeform curveslaurfaces precisely is challenging. To manipulate complex
freeform geometries precisely with an interactive systéma,user must communicate to the system how the vertices,
edges, faces, curves, surfaces, and the entire geometrigmaipulated in real-time dynamically. Modeling complex
curves and surfaces using an interactive system is dif gitiice it requires the user to have knowledge of geometric
representation and the system's user interface. This isrdpart to the limitations posed by conventional modeling
approaches and partly due to the limited set of input andub{tf0) devices (such as the keyboard, 2D mouse and
monitor).

In this research, we addressed these issues in order taovetbe above dif culties in designing complex curves
and surfaces. We presented a novel approach called “Guideg &nd Stitch” (GuTS) modeling using multimodal
interaction. The GUTS approach addresses an importar issiesigning complex curves and surfaces: to provide
precision, uency, and rapidity at the same time. In the G@pproach, complex pieces of curves and surfaces are
created by guided tracing and stitching together piecesofrgtries traced from guide shapes. The GuTS interface
provides the uency of a pen-based sketching interfacengsaper-pencil drawing, and at the same time provides
precision through guiding, automated snapping, and stigclmechanisms. Productivity is also achieved when com-
munication and interaction between the system and the siskineict, uent and rapid.

Precise segments of geometries are created by tracing glodg shapes. Automated snapping and other interac-
tion mechanisms for precisely placing the curves and sesf@ermit precise and rapid manipulation of geometries.
Precision is achieved through the use of guide geometrigsatomated snapping mechanisms.

Multimodal user interaction (such as two handed input,rBatisional (3D) mouse input, pen and data-tablet for
hand-eye coordination, voice input, and synthesized $peetput) addresses the user interface challenges raised in
the GUTS approach. Using these multiple modes, the usefaoeis designed effectively to provide the user with a

uent and direct approach of interaction.
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Rapidity is achieved through snapping mechanisms and thgnmadal user interface. The automated snapping
mechanisms de ne precise conditions with minimal inputtirthe user, eliminating additional input and time. Using

multiple input and output modes simultaneously and effeatbordination provides rapid interaction.
7.1 Review of Contributions
The primary contributions of this research are:

7.1.1 Novel Approach

This research introduces a novel approach called “GuidadeTand Stitch” (GUuTS) modeling using multimodal
interaction to model freeform geometries precisely, ugrand rapidly. While reviewing several related modeling
systems and research, we found no other system exists tbatsthilar tasks (for curve and surface modeling) with
a multimodal user interface. In the GUTS approach geonsetiie created using three operations: guided tracing,
automated snapping, and stitching. Precision is achidwedigh guided tracing operations (for both curves and sur-
faces) and automated snapping mechanisms (for curvegke 8ia tracing operation is direct and uent, it eliminates
the need for the user to be knowledgeable of the underlyiogngtric representation. The GUTS approach also cre-
ates complex geometries by tracing over multiple guide ggges. Secondary contributions of the GuTS approach
include: (a) new snapping mechanisms, such as pivot sngglide snapping, and two-point snapping, and (b) auto-
mated stitching mechanisms for tracing over curves andsesfthat allow pieces of curves and surfaces to be traced
and stitched together to form complex shapes transparently

In curve modeling, the curves are rapidly aligned and pms#til precisely using several snapping mechanisms.
Some of the snapping mechanisms, such as absolute pasitjqoint-to-point snapping and the gravity eld, are
introduced earlier [93, 25, 24, 23]. In this research weodticed “whole object snapping’, that includes different
shapping mechanisms, such as one-point snap/pivotal shide,snap, and two-point snap/ xed snap, which help
the user interactively position the curves precisely amddig during the modeling process. One-point/pivotal snap
creates a (pivotal) point contact and the curves orient sedves about this point. Slide snap creates a point contact
and then further slides the curves along another curve. gowot snap/ xed snap connects a curve between two points
of another curve or two points of two different curves. Basedthe relative positioning of the geometries, these
shap mechanisms are automatically activated and allowdbeto rapidly de ne precise relationships between the
geometries.

The automated stitching and continuity detection featln@sed upon the alignment and orientation of the geome-
tries - automatically stitches the curves together durigttacing operation. The continuity between multiple guid
curves is automatically detected and passed to the tracadeiey. This automated continuity detection achieves
differentC°, C*, andC? continuities automatically, depending upon the propsniethe guide curves and snapping

conditions. This feature eliminates the user's need toieXlgl specify the continuities at every stitching regionda
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allows the user to trace over multiple guides rapidly in otd€form complex geometries. In the GuTS approach, two
types of tracing methods are used. They are zero-pointhgaid thick-brush tracing over a triangulated mesh struc-
ture. Zero-point tracing is used to insert a curve that isvdran the triangulated mesh structure and splits the surface
into regions. Thick-brush tracing selects a region of sugfhy tracing the path over a surface with a user-speci ed

brush-thickness.

7.1.2 Multimodal User Interaction

The GuTS modeling approach created unique challengesdointsrface. To address these issues we introduced a
multimodal user interaction that not only provided a dir@gproach of manipulation and interaction but also enabled
rapid design through multiple parallel uninterrupted I/@das. This multimodal user interaction brings out the
potential of the GUTS approach by expanding and exploriagwdy a user manipulates curves and surfaces. Compared
with other modeling systems that use multimodal interfawrecfeating approximate abstract geometries, the GuTS
approach focused on achieving precision, uency, and igpad the same time. In this research we also demonstrated

how multimodal user interaction was uniquely integratethwhie GuTS modeling approach.

7.1.3 Implementation

As part of this research, we designed and developed an dtitergrototype system, called the GuTS system, that
demonstrates the GUTS approach with multimodal user ictiera The GuTS system highlighted different features of
the GUTS approach. We also presented several examplesvefad surface models that are created using the GuTS
system. These examples from the prototype system alsogtbedeasibility of this novel modeling approach in real-
world applications. We implemented the GUTS system usintiiphel geometric representations, i.e. interpolation
subdivision and Bezier representations for curves, arsklieted mesh representation for surface geometries. By
using multiple geometric representations in the GUTS gystee demonstrated that the GuTS approach can be applied
to different geometric representations; the underlyingngetric representation is transparent to the user; andathe s

multimodal user interface can be used regardless of theriyimegeometric representation.
7.2 Pros & Cons of the GUTS Approach
In this section, we highlight the key pros and cons of the Gapfoach.

7.2.1 Pros

The pros of the GUTS approach are:
Precision, uency, and rapidity is achieved at the same fimfeeeform geometric modeling.

Suitable for modeling complex curves and surfaces that easrdémted from one or multiple geometries.
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Helps the user to visualize the resulting geometry befoeatarg them - i.e. by placing the guide shapes in
place, the user will know exactly how the resulting geometily look, even before any tracing operation is

done.
WYSIWYG (What You See is What You Get) modeling approach.
Does not require the user to be knowledgeable of the undgriy¢ometric representation.

Independent of the underlying geometric representatiomoviging an uni ed front-end user interface to the

user. This approach can be implemented using different geamepresentations.

Makes use of the user's natural multimodal interaction kidia providing direct coordinated multimodal user

interface.

7.2.2 Cons

The cons of the GUTS approach are:

Not ef cient when modeling certain types of geometries -tsas, when most of the modeled geometries involve

lines, polylines and planar faces.
Not suitable for modeling geometries that cannot be reptesieas guide shapes.

Large number of geometries in the modeling session willrfate with the automated snapping mechanisms.

This can be addressed using different methods, such asrigyemcepts discussed in section 7.3.1.

Since the geometric tracing and stitching are partly caimtirs processes, implementing editing features (such

as maintaining history of modi cations, undo feature, eteould become dif cult.

While the GuTS approach can be implemented using a convahkegboard, 2D mouse and monitor interface,

it will make the user interface indirect and complex, makirgjf cult to perform the required operations.

For interpolation subdivision curves and surfaces, piacis limited by the sampling of the input guide ge-

ometries. This is mainly a limitation of the implementatiosther than the GUTS approach itself.

7.3 Limitations and Future Work

In this section, we discuss the limitations in detail, argtdss its potential solutions and future work.
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7.3.1 Large Number of Curves

One of the insights from the observation of the implementgdemodeling program is an issue with the snapping
mechanisms. When a large number of curves exist in a sessiiole, ghapes often stick to unwanted curves that disrupt
the modeling process. This created unwanted snaps andiftire@iser to pull away these snaps until the desired snap
point or curve was reached. This can be avoided by using série dollowing approaches. As mentioned in the
earlier chapter, “skitters and jacks' can be used, i.e. Ipjiatty specifying the points that are for snapping, or by
making only a few active curves so that only these curvesamsidered for the snapping operation. Another way is
to use layers in which a small set of curves in the same groapatrin a layer. By having multiple layers, at any
given time the user will be interacting with a limited set ofees. Though these methods are not implemented in our
current system, they are theoretically well-de ned and easily be implemented in practice to handle a large number

of curves.

7.3.2 History of Modi cations and Undo Feature

In the current implementation of the GuTS system, there isiaohanism to keep track of the sequence of opera-
tions that are performed on geometries. This preventsigpback (‘undo') to the previous step in the design process,
as well as changing or modifying the previously performedrgetric operations. While discrete operations can be
easily tracked and task history can be easily maintainethénGuTS approach several tasks (such as tracing and
stitching) are performed simultaneously and continuqusigking a history list quite tricky. In addition, with the
multimodal user interface, tracking all the inputs from tfiferent devices adds another layer of complexity. In this

research we did not address this issue but it would be integasearch to pursue in the future.

7.3.3 Subdivision Schemes for the Surface Mesh

Curve modeling is implemented using the interpolation stibidn scheme. This allows the user to re ne the
curves and to change the level of detail of the curves dyralipiand interactively. The implementation of surface
modeling does not use any subdivision schemes. This pewemtrolling the level-of-detail of the surface mesh
dynamically. As presented in Chapter 4, the modi ed butyeinterpolation subdivision scheme can be used to sub-
divide the surface meshes dynamically and interactivelgoAthe ability to dynamically control the level-of-ddtai
both locally and globally, will also assist in new ways tofpem other geometric operations, such as tracing, stitch-
ing, smoothing, etc., in the GuTS modeling approach. Whitedlgorithms will be complex to construct, it will

considerably reduce the complexity and increase the é&jtnf the geometric operations.
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7.3.4 Extending Surface Stitching Operations

In our current implementation, the surfaces are stitchedgathe intersection curve. This is explicitly done to
eliminate the introduction of new geometric shapes to thal geometry that are not from the guide shapes or the
initial input geometries. This restriction connects thdates easily without any changes along the surface intiéose
boundaries. This limitation poses some restrictions, sgdiwo surfaces can be stitched only when the surface patches
completely intersect. When these surfaces do not interieetcurrent implementation does not do any stitching
operation. This can be overcome by implementing surfadintpfalgorithms. Through lofting operations, a new
surface patch is created that connects the two input swfoag the boundaries. This will stitch two or more surface
patches by bringing them closer such that an intermediafacguiis created. Then, the two surfaces can be stitched
together. It will be the same as in curve modeling: when twwesiare brought closer, they are snapped and stitched

together to form the desired connectivity.

7.4 Summary

In this research we presented a novel approach called thde@Udirace and Stitch (GuTS) modeling approach
using multimodal user interaction for freeform geometriodeling that simultaneously provides precision, uency
and rapidity. In the GuTS approach, complex curves and sesfare created by stitching pieces of geometries that
are traced from guide shapes. The GuTS interface providesutincy of a sketching interface as in paper-pencil
drawing and at the same time provides precision throughaatied guiding and stitching mechanisms. Multiple I/O
modes imitate natural human interaction and design presesghile providing the advantage of controlling the shapes

digitally.
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APPENDIX
Design and Evaluation of the GuTS System and User Interface

A.1 Introduction

In this chapter we discuss the steps involved in designidigeaaluating the GUTS system's user interface. Design

and evaluation involve the following steps:
Design goals: de ning the goals of the study
User analysis: identifying and describing the intentedsiséthe system
Task analysis: identifying and describing the essenceeofabks to be supported by the system
Design decisions: decisions about the design of the system
System description: Overview of the system and a prototyplesointerface
Evaluation-I: Usability inspection of the prototype syste
Evaluation-II: Usability testing of the revised systemiwiihe user's response

Figure A.1 shows the overall layout of the design and evadnatudy of the GUTS system's user interface. Studies

that involve human subjects (users) require the approvdleoUW's “Institutional Review Board' (IRB) [11] and are

Figure A.1 Design and study of the GUTS system user interface
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monitored by United States Department of Health and Humavi&s [10]. In this research, due to limited resources
- shortage of time, ability to recruit a wide variety and guai test subjects, physical facility to build the experirtegn
setup, gathering the subject's feedback, recursivelyeémgint the feedback into the system - we decided not to perform
the actual human subjects study, but design and presentdheaton process. This procedure allowed us to think in

terms of re ning important design aspects that would be meglduring the design of the GuTS system.

A.2 Goals of this Study

The goal of this study is to measure the success rate of th&s@pproach using the GuTS system to achieve
precise, uent, and rapid modeling through an experimensalr study.
The above goal can be divided into sub-goals and each skis-tadividual characteristics can be measured as

follows:
Feasibility - The GUTS system can be used to model freefomresuand surfaces

Guided Trace and Stitch Paradigm - Eliminates the need ®gsss complex knowledge of geometric modeling

and provides a WYSIWYG user interface

Pen-based input - Allows for easy, direct, and uent tracipgration

3D Mouse input - Eliminates mapping between 2D and 3D inpd, @ovides direct manipulation in 3D
Speech input - Allows the user to input without interruptingrent tasks and decreases "'mode switching'

Auditory output - Eliminates distraction of the user's v@attention from the current focus and acts as a guiding

mechanism

Snapping mechanisms - Provides rapid alignment of geoesefiecisely and decreases error produced by

imprecise user input

Two-handed input - Increases productivity (compared termanual input) and mimics the real-world drafting

process with two-hands

Visual data tablet - Provides better hand-eye coordingtiompared to the regular 2D mouse and monitor setup)

and mimics real-world paper-pencil drafting

Multimodal user interface - Eliminates mode switching aldves users to perform multiple coordinated tasks

simultaneously
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A.3 User Analysis

User analysis includes the de nition of the target audier®ame of the key parameters that need to be considered

are:

Physical characteristics (age, sex, nationality or ethypidemographic information, perceptual abilities, e.g.

perceptual handicaps, motor skills and physical disésljt

Knowledge and experience (level of education, readind |leative language, knowledge of particular domain-

speci ¢ terminology, etc.)

Computer / IT experience or knowledge (computer literagyel of experience with similar systems, level of

experience with other systems, etc.)
Level of experience with the task
Psychological characteristics (attitudes, motivationge the system, etc.)

Quantitative characteristics (how many subjects will bedsal, any need to maintain proportion of the subjects,

etc.)

Financial and compensatory aspects (free or need to paylijecss, credit them as part of their course, etc.)
For studying the GuTS system, the requirements of the users a

Physical characteristics: No restrictions on age, sexomnality or ethnicity. Users must have no perceptual or

physical disabilities.
Knowledge and experience: Users should have English layggpi ciency in reading and writing.

Computer / IT experience: Users should have general kngeled the personal computer (PC) and the Win-
dows operating system, basic knowledge in using interagiaphics application(s) - not necessarily CAD

modeling systems.

Level of experience with the task: None

Psychological characteristics: None

Quantitative characteristics: Number of users will be 2800

Financial aspects: Ideal candidates would be a group o$ tisat are interested in participating in this study for

free.
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A.4 Task Analysis

Task analysis focuses on the de nition of the task from ther'agperspective. The key parameters that need to be
considered are divided into two parts: tasks to be perforametcharacteristics of the tasks.

The tasks to be performed:

Hierarchical description of activity (structure chart)®S models, goals and subgoals, etc.)

Essential use cases (As “leaves' of the hierarchical tree)

Scenarios of use (typically at least one for each essers#gtase, multiple for important use cases, etc.)
The tasks to be performed that are speci ¢ to the GuTS system a

Hierarchical description of activity: Depending upon thsks, structure charts, GOMS models, and goals and

subgoals will be used.

Essential use cases: Core tasks include tracing, stitchiagipulating geometries and viewpoint, pen-based
input, 3D mouse input for manipulation, usability of the GiWindowing system, speech input, sound output,

and two-handed coordinated manipulation.

Scenarios of use: Create speci c tasks that require thetagerform each of the above tasks, so the completion

and success rate of each task can be independently measdrgdamti ed.
General description of task characteristics:

What are the tasks (What are the exact tasks the users performPtdMbbserve for each task? What are the

benchmarks? What determines success or failure?)

The frequency or timing of the task (How frequently do usesdqrm the task? What are the time constraints

on the task? etc.)

The complexity and dif culty of the task (How complex is thaesk? How dif cult is the task? How structured

is the task? etc.)

The relationship of the task to other user tasks (Is systenmasdatory or discretionary? How important is the

task? What is the relationship between the users and the el@ta?

The physical environment of task performance (Where is thle performed? What other tools does the user

have? etc.)
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The social, organizational and cultural environment oftdsk (What kind of relationships subjects have with
other people in the workplace or on the work team? What areftbete of organizational, national, or eth-

nic/cultural differences? etc.)

Planning for learning and breakdowns (What training will bevided? How is the task learned? What can be
said to the users without contaminating the experiment? \Afteathe necessary steps needed to eliminate bias?

What happens when things go wrong? etc.)
Speci c to the GuUTS system, the general description of thk tharacteristics are:

What are the tasks?

— Exact tasks users will perform include: creating compleidgishapes, tracing over the guide shapes
to create new geometries, performing automatic stitchipgyations, manipulating the geometries using
other geometric operations, converting 2D curves to 3Dased, tracing and stitching 3D surfaces, using

speech input for inputting commands, using a 3D mouse fomgéac and viewpoint manipulation.

— Following are some of the things that will be observed foretask: is the task completed successfully?
Is task completed in allotted time? How much time is takerefach task? How many times the user has
to try to nish a task successfully? If a task can be done tgtomultiple modes, which mode was used to

complete the task?

— Benchmarks: benchmarks include correctness and completithe task and, in some cases, within the

allotted time.

— Success or failure: this will be determined based on whethask is completed or not. For some tasks, it

will be based on whether or not the task is performed withierdain period of time.

The frequency or timing of the task: at this stage, how fretlyeusers perform certain operations will be
measured - this identi es the most frequently used tasks; much time is being spent on these tasks, and
determines the number of ‘'mode switches'. When users pedomntinuous operations such as tracing, stitching
and geometric manipulation in the GUTS system, it will becdit to monitor these operations visually. In those
circumstances, it will be helpful to develop a custom feafinat tracks the usage of GUTS operations and the
subsequent time-stamps. Once these operations and timgssare recorded for each user and task, the required

information can be retrieved automatically from the reeardata with little effort and great accuracy.

The complexity and dif culty of the task: complexity of a tag the GuTS system can be measured through
different parameters - such as number of sub-tasks requiredsh a task, total time required to nish a task,
different types of sub-tasks involved to complete a tas&r'sisinalytical and motor skills required to complete

a task, etc.
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The physical environment of task performance: the studybgiperformed in an academic setting in a computer

lab - the tools that will be provided are as shown in Fig. 5.2.

Planning for learning and breakdowns: users will be debd&n the usage of the input/output devices; how to
navigate and control the interface in the GuTS system; one@examples will be demonstrated to the user;
the user may then spend a few minutes using the GuTS systemrelibE experiment starts. Users will know
how the GuTS system can be used but will have no details asy@awkrtain feature is implemented in certain

way so as to eliminate bias and avoid contaminating the @xpatal results.

A.5 Design Decisions

At this stage, decisions are made on how the system will béeimgnted. Key design decisions are documented
formally. This documentation will contain, for each destgtision, the decision itself, alternatives consideratitha
rationale for selecting a particular alternative. Thearadie may draw on published usability guidelines, prioevaht
research studies or data gathered from the target audience.

Some of the key design decisions and reasons to choose tedistad in Table A.1.

A.6 System Description

In this stage, design decisions are made concrete. Thddsevdbcumented in two forms: (a) an overall layout of
the system architecture and (b) a prototype of all or a mayatign of the system. A detailed description of the GuTS

system's user interface is presented in Chapter 5.

A.7 Evaluation

Evaluation of the user interface can be classi ed in sever@ays. One method of classi cation is summative
evalution and formative evaluation.

In summative evalution:
Evaluation of the user interface is done after the systenibbas developed
Typically performed once at the end of development
Not a formal procedure
Evaluation data is used in the next major version of the sw
In formative evaluation:

Evaluation of the user interface is done while the systeneisdgodeveloped



Design decisions

Reasons

Pen-based input

3D-mouse input

Speech input

Auditory output

Guided trace and stitch

paradigm

Snapping mechanisms

Two-handed input

Visual data tablet

Multimodal user interface

Draw, sketch, and trace mimics the process as in the papeitjgkeaw-

ing paradigm; Easy, direct, and uent to trace geometries

Allows direct manipulation of 6-DOF in 3D; Eliminates mapgibe-

tween 2D and 3D input

Provides an additional mode of input that allows the usempai without

interrupting the current tasks; Decreases ‘'mode switthing

Provides an additional mode of output and does not disthecuser's

visual attention from the current task; Acts as a user ggidiechanism

n Eliminates the need to possess a complex knowledge of geometd-
eling; Enables precise modeling; Provides a WYSIWYG userfate

and short learning curve

Provides rapid alignment of geometries precisely; Elirresahe need tg
possess a complex knowledge of geometric modeling; Proddi’yY Si-

WYG user interface

Increases productivity (compared to uni-manual input)nids the real-

world drafting process with two hands

Provides better hand-eye coordination (compared to thelaeD
mouse and monitor setup); Direct sketching over the gedasess in

paper-pencil drawing

Provides multiple coordinated 1/O interface; Eliminatesda switch-

ing; Allows manipulating geometries while performing dtfzhial tasks

simultaneously

Table A.1 Key design decisions and reasons
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Evaluation starts as soon as the system development cycle st

Evaluation appears as part of the prototyping

Very formal and well organized procedure

Evaluation is performed several times during each devetoproycle
Data collected through formative evaluation is classi ed@lows:

Objective Data: Data that is observed directly, and thesdaats.

Subjective Data: Data that is generally the opinions of therst. Sometimes, this is a hypothesis that leads to

additional experiments.

Quantitative Data: Data that is numeric, performance m&tdpinion ratings, statistical analysis, etc. This data

tells that something is right or wrong.

Qualitative Data: Data that is non-numeric, user opiniaisservations, etc. This data tells what is right or

wrong.

The steps in formative evaluation include: design the eérpant and user study; conduct the experiment and user
study; collect the data; analyze the data; draw conclusemmsestablish a hypothesis; incorporate the results and
conclusions into the system; and repeat the whole cyclenagai

Formative evaluation consists of different methods. They a
Inspection methods: in this method, usability expertséesphe system during formative evaluation.
Testing methods: in this method, usability tests are cotedimith real users under observation by experts.

Inquiry methods: in this method, usability evaluators ecllinformation about the user's likes, dislikes and

understanding of the interface.

It is quite common to do a pilot study' before performing agka user study. A "Pilot study' is an initial run
of a study for the purpose of verifying that the test itselfvisll-formulated. For example, a user takes the test to
check whether the test script is clear, the tasks are notitgales or too hard, the time allotted to perform the task is

reasonable for the user, and that the data collected can &eimgéully analyzed.
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A.7.1 Evaluation-I|

Before the experiment starts, rst debrief the user. Durdefprie ng the user is told at least the following: pur-
pose of the study; what they will be doing; explain they cait guanytime without any consequences; describe the
equipment and software setup; tell them what will be recdrdad how long the session will take, etc. Mostly, design
the experiment such that the whole session lasts about anthdwno longer than 2 hours (unless more than 2 hours
are required for the experimental study).

Then give the user a quick demo or overview of the systemf.itdéinecessary, provide the user a hands-on
experience before the experiment starts. Then the usestaitl the experiment. Data will be collected in multiple
forms as discussed above (inspection, testing, and ingoéihods). For the inquiry method, an evaluation/survey
form (a questionnaire) is a widely used method to collecadadm the user. An evaluation form is a thoroughly
prepared questionnaire that will be completed by each stibgfore, during and after the test. Things to consider
while preparing the questionnaire are: ask the right goestiyou only get one opportunity to ask; and questions need
to be clear consistent and enable quick responses. Thaeaueste itself is not presented here but this questioenair
will be thorough and covers all the key aspects that weraudssd in this chapter.

Once evaluation-1 is complete, results from the subjes@iations are analyzed and compared to the design goals
of the system. Data can be analyzed in several ways - some golysed statistical methods are ANOVAs and Chi-
Squared tests. The data and results from the evaluatiog shalild support the designer's goals and conclusions.
Any shortcomings need to be addressed and incorporatethimt®ystem's design. If necessary, new hypotheses will

be established based upon the data and the system redesigned

A.7.2 Evaluation-I|

Once the changes based on evaluation-1 are incorporatethmsystem, the next stage of evaluation is performed.
At this second evaluation stage, the subjects can be the samehe evaluation-I or they can be totally different.
Having the same subjects would be helpful in comparing theltebetween evaluation-l and evaluation-1l. Sometimes
it is best to keep the experiment same but sometimes it is ggookange the experiment depending upon the amount
of changes that happened since the previous experimem, ffteewhole cycle continues - performing the experiment,

gathering data, analyzing results, and incorporating gasto the system.



