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Perception of Average Value in Multiclass Scatterplots

Michael Gleicher, Member, IEEE, Michael Correll, Student Member, IEEE, Christine Nothelfer, and Steven Franconeri

(a) Larger differences between means lead to im-
proved performance.

(b) As the number of points per class increases per-
formance remains good (in fact it may improve).

(c) Stronger cues (color) outperform weaker ones
(shape). Although, participants performed well
even with weak cues.

(d) Combining cues redundantly does not improve
performance.

(e) Irrelevant cues do not degrade performance.
Here, class is shown by color, but the random shape
does not degrade performance.

(f) Adding irrelevant additional classes to the scat-
terplot does not degrade performance.

Fig. 1. Summary of results: viewers can efficiently make comparative mean judgements, choosing the class with the
highest average position in multiclass scatterplots across a wide variety of conditions and encodings.

Abstract—The visual system can make highly efficient aggregate judgements about a set of objects, with speed roughly independent
of the number of objects considered. While there is a rich literature on these mechanisms and their ramifications for visual summa-
rization tasks, this prior work rarely considers more complex tasks requiring multiple judgements over long periods of time, and has
not considered certain critical aggregation types, such as the localization of the mean value of a set of points. In this paper, we explore
these questions using a common visualization task as a case study: relative mean value judgements within multi-class scatterplots.
We describe how the perception literature provides a set of expected constraints on the task, and evaluate these predictions with
a large-scale perceptual study with crowd-sourced participants. Judgements are no harder when each set contains more points,
redundant and conflicting encodings, as well as additional sets, do not strongly affect performance, and judgements are harder when
using less salient encodings. These results have concrete ramifications for the design of scatterplots.

Index Terms—Psychophysics, Information Visualization, Perceptual Study

1 INTRODUCTION

Many visualization tasks require the viewer to create abstractions, or
statistical summaries, over groups of marks. We use the term visual
aggregation for such situations where the viewer “computes” the ag-
gregate properties when presented with a collection of objects. In
many cases, these abstractions can be constructed rapidly even for
large numbers of objects (i.e.,“preattentively”). This ability has been
studied extensively in the perception literature, leading to models of
the mechanisms behind them as well as implications for visualiza-
tion. However, models of aggregation from the perception literature
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are typically based on performance patterns for brief display expo-
sures, leaving it unclear whether their implications apply to situations
where viewers contemplate more complex displays across longer pe-
riods of time. Prior studies isolate individual mechanisms, but provide
little insight on how these mechanisms may be combined.

In this paper, we explore aggregate judgement in visualizations us-
ing a realistic task: assessing the difference in class means in a scatter-
plot. The task involves accurate localization, and we permit viewers to
take time to make accurate judgements. This differs from prior stud-
ies that use unrealistically short exposures in order to build models of
efficient aggregation in the visual system.

Scatterplots are a common visual presentation. Viewer ability to
rapidly and accurately assess trends has been studied (e.g. Doherty et
al. [17] and Rensink & Baldridge [45]). Scatterplots often present
multiple data classes simultaneously to aid comparison. Such dis-
plays are advantageous because they allow the viewer to see specifics
and trends within each class, as well as to make relative judgements
between classes. Li et al. [38, 39] demonstrate viewers’ ability to
make rapid judgements about multi-class scatterplots for several tasks.
While there are many different ways to measure the difference be-
tween classes [50], comparison of the means of groups is common as
it corresponds to many decision criteria (e.g. is one class better than
another). The importance of mean separation has lead to view selec-
tion methods, such as [52] and [16], that maximize it.

It is often possible to present the descriptive statistics to the viewer
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(e.g. explicitly marking the means). However, allowing the viewer
to make the judgement by aggregating the data visually can offer a
number of advantages, such as not needing to know the viewer’s needs,
not needing to clutter the displays with another form of information,
and providing a natural combination of the statistics with the details
and trends. However, these potential benefits of visual aggregation
can only exist if viewers are able to make reliable judgements.

The theory and evidence in the perception literature illuminates
mechanisms that viewers can use for aggregation tasks. However, this
prior work has typically focused on performance within relatively sim-
ple displays that are briefly flashed, in contrast to more complex visu-
alizations that can be inspected over the course of several seconds.
Even though viewers can make rapid judgements about multi-class
scatterplots when forced (e.g. [38, 39]), they generally choose to take
more time. The perception literature describes constraints on the vi-
sual system for rapid, simple tasks. If the same mechanisms are part
of more complex judgements, these constraints make predictions about
our tasks of interest, in situations where viewers take more time.

Because we are interested in viewer performance when they are
not time constrained, our questions cannot be studied using the stan-
dard experimental paradigm that measures response time, either by
asking participants to respond as quickly as possible or varying expo-
sure time. Instead, we use an experimental design where participants
are not time constrained (within limits), and we vary the challenge
level of the trials by altering proprties of the stimulus. Fortunately, the
multi-class scatterplot mean comparison problem affords many types
of control over task hardness. Also, the fact that we do not need pre-
cise timing allows us to implement the experiment in a standard web
browser, affording the use of crowd sourcing which gives us access to
a large and diverse participant pool.

Based on the prior evidence of the limitations of visual mechanisms,
we generated a set of predictions, described in §1.1 below, and tested
these predictions by asking over 750 crowd-sourced participants to
compare group means within scatterplots. These experiments share
many common features, discussed in Section 3. The specific results
of the experiments are discussed in Section 4. The first experiment,
discussed in Section 4.1, uses a between-subjects design to establish
the main points of our theory. However, since many of the important
results are null results (i.e. we predict no performance differences be-
tween different sorts of scatterplots), this design does not provide the
statistical power needed to make some conclusions with confidence.
Therefore, we conducted a series of within-subjects experiments, de-
scribed in Section 4.2, that reinforce these results with higher confi-
dence. After presenting these results, we discuss their ramifications
both in terms of providing an understanding of the perceptual mech-
anisms in visualization tasks, but also to the design of displays that
support aggregate judgement.

We find that viewers can make efficient judgements about the means
in scatterplots, and that constraints on this ability follow predictions
based on the perception literature. Our key findings are summarized
in Figure 1.
Contributions: We test a set of predicted constraints on visual aggre-
gation tasks that involve relatively complex displays viewed over the
course of several seconds. We present a large scale, crowd-sourced
study that supports these predictions. Our task requires judgements
within multi-class scatterplots, a very common visualization, and our
work provides an empirical assessment of how viewers perform on
aggregation tasks, as well as guidance on how to create visualizations
that support these tasks.

1.1 Predictions of Performance
Both the perception and visualization communities have demonstrated
that the visual system can accomplish a wide range of tasks efficiently,
such as estimation of numerosity or mean value.

One common mechanism underlying performance across many of
these tasks is attentional selection: the ability to amplify visual in-
formation that meet some criteria, while suppressing the rest. One
criterion is location, set both by the position of the eyes, as well as
the “spotlight” of attention (though these two are typically highly cor-

related; see [23] for review). Other criteria for selection are featural,
constrained by the presence of existing tuning mechanisms that alter
the weighting of particular features (e.g., certain colors or shapes).
The visual system uses these features to create an abstract map of the
information present. After a subset of visual information is selected
from this map, the visual system can form abstractions over that sub-
set [33, 34, 57]. Tasks can be done efficiently (with only a “flash” of
exposure time) if the viewer is able to weight a map to select the ap-
propriate features and make simple assessments.

Unfortunately, these prior models do not explain what a viewer does
with more time, or how they might be able to use more time to achieve
better performance. These prior studies outline limitations on what the
human visual system is capable of selecting, ignoring, and aggregat-
ing, and here we test how observers perform when they are allowed
sufficient time to use this architecture effectively, and in situations that
are relevant to visualization.

For example, studies from the perception literature show that ob-
servers can efficiently average position across a handful of points [1],
but what about the dozens of points in a typical scatterplot? Percep-
tion studies show that global selection of a single feature value (e.g.
red) is possible (e.g., [49]), but can average position be extracted from
these subsets? Perceptual studies show that some features are easier
to select or localize than others (e.g., color vs. shape) [12, 56] - does
this generalization hold when more time is provided to inspect a vi-
sualization? Perceptual theory suggests that selecting a value within a
single dimension (e.g., red among colors) can be difficult (e.g., [58]),
so will observers really select a value for a second dimension (e.g.
circles among shapes) to take advantage of redundant encoding? Per-
ceptual studies of selective attention suggest that irrelevant ‘distractor’
features are extremely difficult to ignore in briefly presented displays
(e.g., [58]), but will this still be true when observers have sufficient
time to tune their feature-selective filters?

These questions lead to more concrete predictions based on limita-
tions in the basic mechanisms.

• As the means become closer, the task will become more difficult,
and performance will degrade. This prediction is included as a
check of our experimental design.

• Because feature selection acts globally over large collections,
and some work has shown that center-judgements are possible
over large collections of points, performance should not be im-
paired by larger collections. (Fig 1b)

• Because the effectiveness of selection is influenced by feature
contrast, features that are easy to select (e.g. salient colors) will
lead to better performance than features that are harder to select
(e.g. shape, or less salient colors). (Fig 1c)

• Because features must be selected individually, redundant encod-
ings that provide multiple features will not improve performance,
beyond giving the viewer a choice of a feature to select. (Fig 1d)

• Because selecting one feature suppresses the others, conflicting
encodings, such as adding variability along a different feature
dimension, will not impair performance unless the conflicting
feature is so salient that it interferes with the selection of the
primary feature. (Fig 1e)

• Because the viewer selects specific values of the feature, adding
other values does not cause significant distraction. For example,
if the viewer selects purple, then orange, the existence of green
dots should not interfere. (Fig 1f)

• Because selection requires choosing what to select and what to
suppress, a sufficient diversity of distractions may impair perfor-
mance.

Our premise is that some of the same underlying mechanisms used
in rapid response tasks are used in longer time tasks. This does not im-
ply that performance is the same: viewers may have different ways of
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using the basic mechanisms. However, it does suggest that the funda-
mental limitations of the mechanisms (what can be selected and what
can be extracted from the resulting subset) still apply at longer dura-
tions. Our experiments seek to confirm these performance predictions.

2 BACKGROUND AND RELATED WORK

The literature on perceptual psychology provides inspiration for both
the types of abstractions that can be constructed over sets of objects,
and the types of cues that allow efficient segmentation of these sets.
The human visual system can quickly construct many types of abstrac-
tions from sets, including numerosity (see [22], for review), and aver-
ages over dimensions like size [3, 10], orientation [11], motion direc-
tion [37], spatial frequency [2], and perhaps even more complex prop-
erties like facial emotion and gender [26] (but see [40], for caveats).
Efficient segmentation of sets has been studied using tasks such as vi-
sual search [54], texture boundary identification [8,9], and number dis-
crimination [27]. Most relevant to the present studies, observers can
average spatial position over a set of objects [1], but this study only
demonstrated this ability for a handful of objects. Other work shows
that people can make saccades to the centerpoint of objects made up
of large sets of dots that form a rough object contour [41], but it is not
clear that this ability will generalize, or that this centerpoint estimate
is consciously available.

These tasks have revealed many features that serve to segment sets
of objects broadly and rapidly, including relative differences in hue,
orientation, shape, and size [18, 56, 57], as well as some more com-
plex visual properties such as lighting direction [20]. Some features
are processed more efficiently than others [56] - e.g. tasks involving
selecting lines with atypical colors in a display are faster and less er-
ror prone than tasks involving selecting lines with atypical concavity.
Haroz and Whitney [29] also explore how the mechanisms of attention
limit performance in various visual tasks.

The visual system can create abstractions (e.g. numerosity estima-
tion, mean position, spatial envelope extraction) across the set of visual
field locations that are currently selected by attention. Concretely, at-
tentional selection is a relative amplification of visual information that
meets certain criteria, such as being in a specific location (e.g., in the
upper left of a display), or containing specific feature values (e.g., red,
left tilted, curved, or two-inches-tall). The possible criteria are con-
strained by the presence of existing feature maps [24, 51] that index
the presence or absence of that feature across the visual field, such
that novel or arbitrary criteria are not available. Increasing the weight
on one or more of these maps would lead to amplification of the visual
information that is spatially correlated with the locations highlighted
by that map. The perception literature explores many questions related
to how this type of model operates, such as whether we can amplify
multiple maps corresponding to values on the same dimension [33,37],
or whether new maps can be constructed with practice [7].

For present purposes, the most pressing questions revolve around
how well people can use these maps and the underlying mechanisms
for performing more complex tasks. Most of this work relies on briefly
presented visual search displays, and shows that ignoring particularly
salient objects can be difficult in some types of displays, suggesting
a default mode where people automatically weight maps with unique
spots of activation (e.g., [5]). Other work shows that instruction or
recent experience can alter the weights on these maps, leading to in-
creased attentional control over what spatial locations or feature values
contribute most to attentional selection (for review see [19]) .

While such results from the perception literature are informative,
their conclusions about attentional selection do not necessarily gen-
eralize to the types of set segmentation needed within data visualiza-
tions. First, the tasks used typically require responses within less than
a second, which may lead to an underestimate of the types of atten-
tional selection control that may be possible given less rushed visual-
ization tasks that extend over the course of several seconds. We believe
the same constraints apply within more complex and extended visual
operations that unfold beyond the first “preattentive” snapshot. Sec-
ond, the tasks typically require observers to either find a single unique
object (visual search) or compare relative size or numerosity across

multiple sets of objects (e.g. [10, 27]), leaving open the question of
whether other types of judgements (e.g. mean spatial position) can
rely on the same mechanisms.

Researchers in visualization and graphics have investigated how
known perceptual processes and features interact in more realistic dis-
plays. Healey, Booth & Enns varied features for encoding salmon mi-
gration data [31], finding that participants could successfully perform
numerical estimation of items of a particular hue (with task-irrelevant
orientation) and of a particular orientation (with task-irrelevant hue)
quickly (< 200 ms) and accurately. They also found no effect of
interference from the task-irrelevant features, unlike previous stud-
ies ( [8, 9]). Their displays were regular grids, and the values were
contiguous regions, and therefore are quite different than scatterplots.
More recently, others have investigated the best symbols for data en-
coding. Li et al. varied lightness and size of symbols in scatterplot
displays from which participants performed several visual analytic
tasks [38, 39]. Participant performance was used to model an opti-
mal discriminability scale with equal perceptual separation between
scatterplot symbol lightness and sizes.

This work is one of several in a recent trend towards using em-
pirical methodology to analyze how aggregate statistics are perceived
and compared in common visual displays. The proposed experimen-
tal task (comparison of mean values) and its connection with a rel-
atively high-level aggregate statistical comparison of mean has been
used by Foureizos et al. to analyze statistical decision-making in bar
charts [21], where as Doherty et al. [17] and Rensink & Baldridge [45]
have both looked at correlation coefficients in scatterplots. Two recent
papers by Correll et al. have examined the visual perception, aggrega-
tion, and comparison of mean values, in both time series data and in
paragraphs of tagged text [14, 15].

3 EXPERIMENTAL DESIGN

Our work involved a series of pilot studies and two main experiment
sets1. This section describes the elements common among them.

The model task chosen for our study was to judge the average height
of the classes in a multi-class scatterplot. We presented this to partic-
ipants as a two-alternative forced choice – “which type of point is on
average higher?”

Our performance measure was participant accuracy. We explicitly
do not consider time as a performance criteria: we want to under-
stand viewer performance when they can take the amount of time they
feel is necessary to perform accurately. Participants were instructed
to answer as accurately as possible, rather than as quickly as possible.
We did bound the exposure time of the displays (to ten seconds), to
ensure that the participants made sufficient progress and to thwart cer-
tain kinds of cheating. The experiment was instrumented to enforce
the time limit and record time measurements. Very rarely did partici-
pants run into this time limit.

Multi-class scatterplots have a number of attributes that may af-
fect performance on the mean estimation task. First is the number of
classes. In our experiments, we only consider two-way comparisons,
although for some conditions we add a third class as a distractor. Sec-
ond is the number of points per class. For this study, we consider
only cases where each class has the same number of points, as we did
not wish to confound numerosity (which has been previously studied)
with mean position. In pilot studies, we confirmed that performance
was consistent over a range of numbers of points per class (15-75).
We were limited in the range we could explore: if there are too few
points, the viewer may be tempted to use a serial strategy; if there are
too many points the display may become too dense for the points to be
presented distinctly. In most experiments, we chose to use 50 points
per class in each display, with exception of one condition where we
have 75 points per class to assess the impact of number of points. A
third issue is the degree that the classes are inter-mixed. If the different
classes are highly disjoint then the comparative averaging task is triv-

1Further details of the experiments, including stimuli, in-
structions, and result tables are available at the project website
http://graphics.cs.wisc.edu/Vis/ScatterVis13/.

3



(a) ∆ = 4 pixels. (b) ∆ = 12 pixels. (c) ∆ = 20 pixels. (d) ∆ = 28 pixels. (e) ∆ = 36 pixels.

Fig. 2. Example stimuli from our various levels of task difficulty parameter ∆, the difference (in pixels) between classes in our
scatterplots. When ∆ = 0, both classes of points have the same average. In 2a,2c,2e purple points have the highest average. For
the others, orange points have the highest average. For this set of stimuli orange points always have the highest absolute value, to
disambiguate averaging and peak-finding tasks. Even for the lowest levels of ∆ used in our experiments, aggregate performance
was significantly better than chance.

ial. If the points are clustered, various visual mechanisms can simplify
the task [29].

The primary “hardness” attribute in our design is the vertical dis-
tance between the means of each class of points. The closer these
are together, the more accurately the means must be localized such
that a correct comparison can be made. We call this parameter ∆, the
distance between centers, and measure it in pixels. Figure 2 shows
various stimuli at different levels of ∆. In the experiments below, we
confirm that this parameter is correlated with performance. In pilot
studies we observed that when the task was “sufficiently hard,” people
took a few seconds to make a judgement. There is an expected ceiling:
when the task becomes sufficiently easy, most people can get the right
answer most of the time. In pilot studies we observed that if we only
showed participants hard examples, their performance on those hard
examples was significantly worse than if we also showed them some
easier examples. Through additional piloting we determined appropri-
ate hardness levels that were used in subsequent experiments.

For each condition, each participant was shown a number of differ-
ent hardness levels. For each hardness level, six different trials were
shown, three of each class as the correct answer. Within each condi-
tion, the order was fully randomized.

After giving consent, participants were given a color vision defi-
ciency test using Ishihara plates [28]. Participants failing this test
were barred from participating in the main study. Those qualifying
were shown a brief tutorial explaining the experimental task that em-
phasized that they were to identify the class with the highest average
value, not the highest specific value. Participants were then shown a
number of practice stimuli. The practice consisted of a set of “very
easy” stimuli. If the participants correctly answered two of these set in
a row they proceeded to a set of slightly more difficult stimuli. After
correctly guessing two in a row of these stimuli, they were shown an
example of a difficult stimulus. After an incorrect guess, participants
were explicitly shown the right answer and then allowed to proceed
(see Figure 3).

3.1 Stimulus and Generation

Our stimuli are randomly generated multi-class scatterplots. The
points were placed according to a uniform random distribution sub-
ject to constraints that the difference in the means between groups had
the specified value of ∆, and that the points were spaced sufficiently
such that no glyphs would overlap. To generate a set of points for a
trial, the vertical center of the two classes was randomly selected to be
somewhere in the middle third of the display. Randomly shifting the
center discouraged strategies that involved considering the mid-point
of the display. Given the center of the entire point set, the mean for
each class is computed by displacing them above and below. To gen-
erate the random points, a dart-throwing approach [36] was used for
the Poisson sampling (to prevent overlaps), and best-candidate sam-
pling [42] was used to bias the random distributions to have the appro-
priate means. Darts were thrown alternating between the two classes
to allow for random mixing. The points were adjusted by displacing
the points of each class a small amount such that the difference in the

Fig. 3. An example stimulus from our experiments. Participants
were asked “Which type of points are on average higher?” In
this case the types of points being purple or orange circles. In
this example the actual mean values are marked to make the
difference between classes obvious.

means had exactly the required value. When a third class of points
was necessary as a distractor this was added after the first two classes
of points were generated using the same best-candidate dart throwing
sampler. In cases where there was a conflicting cue, the specific level
of the conflicting cue for each point was determined randomly.

In pilot studies, we noted that the class with the higher average
was more likely to have one of its points be the highest on the chart,
leading to a dominant strategy where participants would simply pick
the highest point in the chart achieve good accuracy. To discourage
this strategy, we purposefully de-correlate which class has the top-
most (and bottom-most) point from which class has the higher average
by making one class always have the highest point (and the other have
the lowest).

In the pilot studies and initial trials, an alternate set of stimuli was
created by flipping the stimuli vertically. We counter-balanced flipped
and non-flipped cases in a between subjects design and found no sig-
nificant difference between them. This further added to our confidence
that the random process did not create artifacts that skewed the results.

The specific point values of all classes across all levels of ∆ were
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computed in advance. We used the same sets of points for different
conditions between participants, to the extent possible. That is, all
of the conditions in Experiment Set One that have two classes of 50
points used the same positions for those points, only altering the way
the points were drawn. Similarly, all within-subjects experiments used
the same data. Different sets were generated for each block of the
experiments, but all experiments (except for the one with 75 points)
used the same generated point sets.

Stimuli were generated for a variety of visual encodings. Color
encodings used orange and purple for the two classes, chosen from a
ColorBrewer [30] qualitative set. In pilot studies, we confirmed that
there was neither bias between these colors, or to which one was listed
first on the question page. In contrast, our pilot studies found that
there was a bias towards red, which is consistent with effects seen
in other experiments [13] [53]. Glyphs were usually drawn as filled
circles, except when a shape encoding was used, in which case glyphs
included triangles, pluses, or squares. The glyphs were sized such that
they had (approximately) equal area.

Stimuli were pre-rendered as 400 pixel square images, with white
backgrounds and without axes. They were delivered to the partici-
pants web browsers in a lossless image format to avoid differences
in browser rendering. Circular glyphs were 6 pixels in radius, other
shapes were adjusted to have similar area. Each glyph had a 10 pixel
radius “exclusion zone” in which no other glyph could be drawn. Since
these zones do not overlap, the minimum distance between two circu-
lar glyphs is 8 pixels. Stimuli were rendered using sub-pixel accurate
anti-aliasing.

Practice and tutorial stimuli were generated using a similar proce-
dure to the actual experimental stimuli. However, the dart throwing
process was used to ensure that a space was left for the mean mark.
This additional space may have skewed the distributions, but we were
not concerned about this for the tutorial and practice images. Figure
3 shows an example stimulus generated by this method, as well as
showing an example of a mean mark of the type seen by participants
in practice images.

3.2 Crowdsourcing
We chose to use Amazon’s Mechanical Turk crowdsourcing platform
to conduct our experiments – previous research has shown that Turk
offers a participant pool that is more diverse than would be recruited
from a college campus [6,47], and that the relatively quick turn around
of Turk studies fits our model of performing a large number of itera-
tive, somewhat contingency-based studies. With proper care in ex-
perimental design to avoid “click through” or other cheating behavior,
Turk studies can be a reliable source of human subjects data [43], and
data for the analysis of the efficacy of designs in information visual-
ization specifically [32, 35].

For our experiments only Turkers from the United States were el-
igible to participate, and once a participant completed an experiment
they were added to a blacklist such that were not eligible for any of the
other experiments discussed in this paper. To prevent click-through be-
havior we randomized question order, included non-obtrusive valida-
tion questions, and split questions across multiple pages and response
types (e.g. binary choices, text fields, constrained response). Partici-
pants were paid at a standard rate ($6 per hour) for the estimated time
the study took (10 minutes ($1) for the between subjects experiments,
15 minutes ($1.50) for the within subjects experiments). Participants
completing the study were paid for the full expected time, even though
most completed more quickly.

3.2.1 Demographics
We recruited 778 participants in total, 453 (58%) men and 325 (42%)
women. Ages ranged from 18-65 (µage = 32.6, σage=10.5). 117 partic-
ipants were recruited for pilot studies and other test experiments that
are not included in the final analysis. While the age data seem close to
the expected values of U.S. Turkers as a whole, our gender ratios do
not match the self-reported demographics of U.S. Turkers as measured
in previous studies [47], indicating either a shift in demographics for
Turk as a whole, or a recruited population with a different profile than

in previous census tasks (as an example our task was higher paying
than tasks designed just for self-reporting of demographic data, which
may attract a different participant pool).

4 EXPERIMENTS

In Section 1.1, we made predictions about the mean comparison task.
These lead to a set of hypotheses:

1. Our parameter ∆ would be a useful metric for task hardness -
across all experiments, ∆ would be positively correlated with
overall performance at the mean estimation task.

2. Within reasonable bounds, increasing the number of points
would not significantly hurt performance.

3. Color, as a very strong cue, would have higher performance than
other choices for primary cue, such as shape or orientation.

4. Using multiple cues to redundantly encode class membership
would not significantly help performance - since efficient selec-
tion is accomplished using a single feature, so making the selec-
tion easier would not translate to improved accuracy.

5. Having a second cue which is non-informative as to class mem-
bership would not hurt performance, for similar reasons.

6. Adding additional classes which were non-informative to the bi-
nary forced choice would also not hurt performance.

7. A sufficient diversity of distractions will impair performance.

We ran an initial set of between-subjects experiments to confirm or
disconfirm these hypotheses. Since many of our hypotheses (2,4,5,6)
were suppositions about negative results, we also performed a set of
within-subjects experiments where negative results would be stronger
statements about the actual difference in means.

4.1 Experiment Set One (Between-Subjects)
We performed a series of eleven disjoint experiments that we treat
as one between-subjects experiment 2 in order to initially explore the
parameter space for encodings and confirm our hypotheses about the
pre-attentive aspects of the mean estimation task. In each experiment
participants were exposed to a single type of multiclass scatterplot.

Participants were shown 39 total stimuli in random order - six stim-
uli from each of six different levels of our proposed hardness param-
eter ∆ (the pixel difference between means of the two classes in the
scatterplot): 8, 16, 24, 32, 40, and 80 pixels. In addition there were
three questions with a ∆ of 0 pixels – that is, both classes had iden-
tical means. The ∆ = 80 questions were used for validation purposes
– if participants did not get more than 50% of these questions correct
then they were excluded from analysis. The ∆ = 0 questions were
used to determine if there was systematic bias towards one answer or
another (the expected distribution of answers should be approximately
even at this level, since the participants would be essentially guessing).
Both the ∆ = 80 and ∆ = 0 questions were otherwise excluded from
the main analysis. 32 participants were recruited for each experiment.
Participants not meeting the inclusion criteria were removed entirely
from the main analysis, but no additional participants were recruited.
Ultimately 40 exclusions were made using this criterion, out of a total
participant pool of 352 people.

We performed eleven experiments with this general model, each
with a different choice of class encoding. Figure 4 summarizes these
choices of encoding. We had three main groups of encoding: one in
which hue was used to encode class membership (in this case one class

2 We note that this was a sequential series of experiments, and not a proper
single between-subjects experiment, as we ran different conditions on different
days at different times. Since the participant pool of Mechanical Turkers may
vary widely depending on time of day, this was a potential source of variance in
our results which we could not adequately model, although experiments were
run at similar times each day.
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Label Encoding Glyphs Notes Accuracy

a) Hue vs. – 79.4%
b) Hue vs. – 80.6%
c) Hue vs. 75 points per class 84.5%
d) Hue vs. distractor points 83.8%
e) Hue vs. Shape as redundant cue 82.8%
f) Hue vs. Shape as conflicting cue 79.8%
g) Hue vs. Orientation as conflicting cue 84.2%
h) Hue vs. distractor points 80.0%
i) Luminance vs. – 79.2%
j) Shape vs. – 72.9%
k) Shape vs. Color as conflicting cue 71.4%

Fig. 4. User performances in the first block of between-subjects experiments. Unless otherwise noted, participants saw 50 points
of each class of glyph and were asked to guess which class was on average higher. Using the results of a Tukey’s HSD, light green
rows were statistically indistinguishable from each other but significantly different from the orange rows, and vice versa.

was orange and the other purple), shape encodings of class member-
ship (one class had circular glyphs and the other triangular glyphs),
and a single experiment where luminance was used (one class with
light gray glyphs and the other dark gray glyphs). We also investi-
gated the effect of having additional encodings layered on top of the
main class encoding, which either supported the main cue (they were
redundant with the main encoding) or provided no information (they
conflicted with the main encoding).

4.1.1 Results

Our results across all experiments in this set confirmed hypothesis 1:
as ∆ increased, participants performed monotonically better. Figure 5
presents these results broken down by ∆. A one-tailed t-test confirmed
that even at our lowest sampled level of ∆, participants still performed
significantly better than chance (t(1868)=9.89, p(µx < 0.5)< 0.0001.

Hypothesis 3 was also confirmed by this set of experiments. We
conducted a two-way Analysis of Variance (ANOVA) to determine the
effect of our eleven encoding/secondary cue choices on performance.
We found a significant effect of this factor on performance (F(10,9328)
= 9.91, p < 0.001). Post hoc analysis using a Tukey test of Honest
Significant Difference (HSD) revealed two clusters of performance:
one cluster where color (hue or luminance) was used as the main cue,
which significantly outperformed the cluster where shape was used as
the main cue.

This clustering also provides evidence that causes us to fail to reject
our other hypotheses (2,4,5, and 6). There was no significant differ-
ence between performance when the number of points per class was
increased from 50 to 75 (experiment 1c), nor when additional classes
of points were included (experiment 1d,1h), or when secondary cues
where used (either redundantly as in experiment 1e or in conflict with
the main cue as in experiments 1f and 1k). While these similar lev-
els of performance provided some evidence of the validity of these
hypotheses, we decided that a between-subjects experiment was an in-
sufficiently powerful model to capture these negative results. Figure 4
presents the results of experiment block one in detail.

4.2 Experiment Set Two (Within-Subjects)

In order to reconfirm our results with a stronger model of participant
variance, as well as explore the inter-relation between more specific
classes of encodings, we performed nine within-subjects experiments
in which one participant saw two different sets of scatterplots with
different sets of encodings.

The task and parameters of the stimuli were similar to the first set
of experiments. One difference is that participants were given two
“blocks,” each containing 36 different scatterplots, for a total of 72
questions. In each block there were an equal number of stimuli with
the following pixel differences (our ∆ parameter) between the per-class
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Fig. 5. The effect of our proposed hardness parameter ∆ on
hardness across all of our between-subjects experiments. ∆

represents the difference, in pixels, between the mean values
of each class in a particular scatterplot. As ∆ increases the
comparative judgement of which class of points is on average
higher becomes easier.

means: 4, 12, 20, 28, 36, and 80. These ∆ values were chosen to
provide more information about the more difficult questions while still
containing enough easier questions to not discourage participants. The
∆= 80 questions were used for validation but otherwise excluded from
analysis: if participants got 50% or fewer correct they were excluded.
One block was a “baseline” block with a simpler choice of encoding,
and the second had a more difficult encoding scheme. The presentation
order was counter-balanced across all participants such that an equal
number was exposed to each presentation order. If an exclusion was
made additional participants were recruited dynamically, so that for
the final analysis 16 participants were exposed to each presentation
order for a total of 32 participants. 27 additional participants were
recruited for this purpose, for a total subject pool of 319 people.

The choices of main encoding across these experiments, as well as
the choices of difference between the first and second blocks, were
aligned to provide additional evidence for hypotheses 2,4,5, and 6, for
which we had some evidence of validity from our previous set of ex-
periments, but no concrete measures of interaction between the base-
line condition and individual factors (increasing the number of points,
adding redundant cues, adding conflicting cues, and adding additional
classes respectively). Figure 6 lists these choices of encoding in detail.
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Label Encoding Block 1 Block 2 p-value
Notes Glyphs Accuracy Accuracy Glyphs Notes

a) Color – vs. 79.5% 75.5% vs. distractor points p = 0.03
b) Color – vs. 76.8% 80.1% vs. Shape as conflicting cue p = 0.07
c) Shape – vs. 76.4% 72.9% vs. Color as conflicting cue p = 0.07
d) Color – vs. 75.8% 78.9% vs. 75 points per class p = 0.09
e) Color distractor points vs. 81.2% 79.7% vs. distractor points p = 0.39
f) Color – vs. 78.2% 76.9% vs. distractor points p = 0.46
g) Color – vs. 80.7% 79.7% vs. Color as redundant cue p = 0.55
h) Shape – vs. 78.5% 78.3% vs. Color as redundant cue p = 0.91
i) Shape – vs. 75.9% 75.7% vs. Color as conflicting cue. p = 0.91

Fig. 6. An overview of results from our within-subjects experiments. Participants were presented with two different classes of stimuli
in discrete blocks (presentation order was counterbalanced across participants). Unless otherwise noted, each stimulus had 50
points of each class. Statistical significance was determined via a two-way ANOVA. Green rows indicate significant difference
(p < .05) in performance between the two blocks, light green indicates statistically marginal difference (.1 > p > .05), white indicates
no significant difference between blocks.

4.2.1 Results
This block of experiments provided more evidence for hypothesis 2
(that additional points would not make the mean estimation task more
difficult). We performed a repeated measures ANOVA (rANOVA) on
experiment 2d to determine the effect of block (where one block had
75 points per class, and the other had 50 points per class) on perfor-
mance. There was a marginal effect of adding additional points on per-
formance (F(1,2110)=2.83, p = 0.09), but as the number of points in-
creased performance was marginally higher (accuracy of 75.8% when
there were only 50 points per class versus 78.9% when there were 75
points per class), not lower (as one would expect if adding additional
points hurt performance).

Our experiments also provided more evidence for hypothesis 4: ex-
periments 2g and 2h both dealt with redundancy, using color and shape
simultaneously to encode class membership. Two rANOVAs were
performed on experiments 2g and 2h to determine the effect on the
inclusion of redundancy on performance. Performance was not sig-
nificantly different comparing these redundant encodings to color en-
coding alone (2g, F(1,1917)=0.36, p = 0.55 ) or shape encoding alone
(2h, F(1,1917)=0.01, p = 0.91).

Likewise experiments 2a, 2b, 2c, 2e, and 2i all featured conflict-
ing cues, providing evidence concerning hypothesis 5. In experiments
2b, 2c, and 2i the addition of a cue which conflicted with the main
class membership cue was the only difference between blocks. rA-
NOVAs were performed on each of these experiments. For 2i (where
the main cue was shape, and color of stroke was added as a conflict-
ing cue) there was no significant effect of conflict on performance
(F(1,1917)=0.01, p = 0.91). There were marginal effects of perfor-
mance for 2b, where color was the main cue and shape was used as a
distractor (F(1,1917)=3.2, p= 0.07), but it was the presence of conflict
where performance was higher (80.1% accuracy where shape conflict
was present, 76.8% where shape conflict was absent). Experiment 2c
had shape as the primary cue with color as conflict: there was also a
marginal effect of conflict on performance (F(1,1917)=3.2, p = 0.07),
but in this case it was the absence of conflict where performance was
marginally better (76.4% accuracy where there was no color conflict
vs. 72.9% accuracy where conflict was present).

Experiments 2a, 2e, and 2f all featured a third distracting class of
points that were meant to provide evidence for hypothesis 6. In exper-
iment 2f the addition of a third class was the only difference between
blocks. We performed an rANOVA on experiment 2f to test for the
effect of the presence of an additional class of points on performance.
We found no significant effect (F(1,1917)=0.54, p = 0.46).

Experiments 2a and 2e dealt with the conjunction of hypotheses 5
and 6, and provide evidence for hypothesis 7. Experiments 2b and 2f
discussed previously provided evidence that the addition of a shape
as a conflicting cue, and the addition of another class of points, were

by themselves not significant effects on performance. Likewise, an rA-
NOVA performed on experiment 2e to check of the effect of shape con-
flict once a distractor class is already present on performance showed
no significant effect (F(1,1917)=0.74, p = 0.39). Only when the jump
was made from stimuli with neither additional classes nor shape con-
flict to stimuli where both were present (as in experiment 2a) was there
a significant negative effect on performance (performance of 79.5%
when no cue conflict or additional classes were present versus 75.5%
when both cue conflict and additional were present). An rANOVA
confirmed the statistical significance of this effect (F(1,1917)=4.53,
p < 0.03). This is consistent with hypothesis 7.

5 DISCUSSION

The mostly negative results of the first experiment set speak to the ef-
ficiency of this task: even with significant inter-participant variance
from a diverse participant pool, and with a wide diversity of cues, ag-
gregate performance across conditions differed only by as much as
13.1%. Within-cue variability was even lower: aggregate differences
of 5.1% across eight experiments when hue was used as encoding, and
1.5% for both experiments where shape was used as the encoding.

Our experiments 2a, 2b, 2c, 2e, and 2i initially seem ambiguous
as to the effect of conflicting encodings (additional cues beyond the
main cue). While 2b, 2e, and 2i show no harm (or a marginal posi-
tive benefit) in the presence of conflicting encodings, 2a and 2c seem
to point to a negative impact of cue conflict on performance. While
marginal, the results of 2c might speak to our hypothesis that color is
a much stronger cue for selection than other cues like shape (which
is reflected in the literature, where color selection is more efficient
in terms of accuracy and precision compared to many other potential
choices of encoding [12, 56]). This would also explain why experi-
ment 2i, which was very similar in design and choices of cue, did not
see a similar degradation in performance – by using stroke color rather
than fill color, the salience of color as a potentially distracting cue is
reduced.

Experiment 2a represents an upper end to the complexity of the
task: neither conflict (as in 2b) nor distractor classes (as in 2f) by
themselves are sufficient to negatively affect performance. Figure 7
shows this visual complexity of these various levels – resulting in a
stimulus which is very dense and very visually complex. Visual com-
plexity (and specifically visual clutter) has been shown to lead to errors
in judgement [4]. It is important to note that simply adding a few ex-
tra points does not add as much visual clutter as introducing visual
heterogeneity to the existing points [46], which contributes to the neg-
ative result in experiment 2d. While it is likely that there is an upper
limit (in terms of number of additional conflicting cues, or number of
additional distracting classes) that would substantially reduce perfor-
mance for the averaging task, in most real world settings the number
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(a) A baseline condition: no distracting
groups, no conflict in encoding.

(b) The conflict condition: the shape cue
conflicts with the main cue of color.

(c) The distractor condition: there is an
extra class of green points

(d) Both conflicting cues and a distractor
class are present.

Fig. 7. An overview of the positive result in our within-subjects
experiment. Performance was marginally better when conflicts
in shape (7a vs. 7b) were included and statistically indistinguish-
able when distractor classes were included (7a vs. 7c), or when
shape conflict was introduced to stimuli where a distractor class
was already present (7c vs. 7d). Only when both potentially
harmful conditions were introduced simultaneously (7a vs. 7d)
was there a statistically significant impact on performance.

of classes to be distinguished are relatively small, and the number of
dimensions which are simultaneously to be encoded is also small.

In experiments 2g and 2h, we found that redundant encodings
(shape and fill color; shape and stroke color) did not improve perfor-
mance. This contrasts with both common wisdom and past empirical
findings that Ware [59] summarizes with the guideline “To make sym-
bols in a set maximally distinctive, use redundant coding wherever
possible” (guideline 5.11). Future work should re-evaluate this guide-
line.

These findings have ramifications for the design of multi-class scat-
terplots. First, viewers are capable of making judgements about the
difference between classes, even when there are many points and the
differences are small. This suggests that scatterplots can convey the
inter-class differences without explicitly showing the means. The ben-
efits of scatterplots in showing the data (e.g. distributions and trends)
also afford communicating aggregate properties. Second, because
conflicting cues do not hinder performance in the assessment of ag-
gregates, layering information in multiple cues (e.g. using both color
and shape to encode different properties) is likely to be an effective
strategy. Third, because distractor classes have little effect on perfor-
mance, multi-class scatterplots should not necessarily be avoided in
favor of simpler ones. These guidelines are qualified by a number of
limitations. For example they assume that the viewer has ample time to
view the display and that the classes of points are sufficiently distinct.
Other limitations are considered in the next section.

5.1 Limitations and Future Work
We have tried to generate data in ways that preclude dominant strate-
gies where the experimental participants can easily figure out the cor-
rect answers, for example by crafting our data so that choosing the
maximal points does not work. It is impossible to know that such

a strategy does not exist. We did ask participants to self-report their
strategies at the end of the experiment, although this is generally a poor
assessment of how they actually do the task. These self-reports did not
reveal any clear dominant strategy (except for the top-most strategy in
the pilot study). However, if the participants were able to develop a
strategy over the course of the experiment (without us providing feed-
back, and without them showing learning effects), they would proba-
bly develop similar strategies in realistic tasks as well. Indeed, some
of the strategies that a participant might apply still work within our
model, as they require pre-attentive selection and aggregation.

Our experiments only consider a single distractor task. In theory,
our model suggests that more distractor classes should not hinder per-
formance. In practice, however, this is difficult to test or exploit: as
more classes are added, they are (necessarily) less distinctive. This
loss of distinctness of classes would cause a degradation of perfor-
mance, even if the increase of the number of classes does not.

A key limitation of our study is that we do not manipulate timing.
While the lack of hard time constraints may be more realistic, our
experiments cannot explain what a viewer does with this time, or even
show that having time makes a difference. Participants chose to spend
more time than they were given in prior studies of rapid response tasks,
despite the fact that, as crowd-workers, they have financial incentive
to finish their tasks quickly.

Our data show that the same attentional limits that apply in rapid re-
sponse tasks also apply in the non-time-constrained mean comparison
task. Given this, we might wonder how more time might be helpful.
Viewers choose to take more time when asked to focus on accuracy,
presumably because they believe it will help, and we have initial pi-
lot data that suggests performance does vary with time. We do not
believe this is a contradiction: while more time cannot improve the
performance of the attentional mechanisms, it does give a viewer the
opportunity to use these mechanisms differently.

The overall task of making mean judgements from a scatterplot is a
higher-level task than considered in the perception literature. Breaking
the task into smaller subtasks presumes a model of what the subtasks
are and how they integrate. Sections 1.1 and 2 already describe some
of the subtasks: selecting individual collections and constructing av-
erage position values from each. Our data are consistent with these
mechanisms being involved: their limitations can be seen in perfor-
mance on the compound task.

The literature suggests that the subtasks may be assembled as a se-
rial process - one feature value (e.g. red, or circles), and thus one
collection, is selected at a time. This property stems from theories
and supporting evidence that keeping representations of different ob-
jects or subsets of objects separated requires that they be isolated over
time. Selecting multiple things at once mixes their properties within
the visual system’s representation [44, 55]. Thus, processing the in-
dividual group centers of two collections required that each group be
isolated serially [33, 37]. Without such serial selection, these theories
predict that the visual system could only provide the center of the en-
tire superset, which is a useful statistic for many purposes, but not for
determining the higher collection. For the same reasons, determining
the spatial relationship between the two collection centerpoints (is col-
lection A higher than collection B) also likely requires serial selection
over time [25, 48]

The serial selection process suggests theories of what a viewer may
do with more time. For example, they may make several passes of
selection across each feature dimension, selecting one group of points
by color, abstracting its mean value, and then doing the same for the
other group. For novices at the task, extended amounts of time may be
beneficial as they develop routines of serial selection, and they become
even more efficient at ignoring otherwise salient information from dis-
tractor collections. Even with practice, repeating this serial cycle may
allow even expert observers to increase their accuracy for the collec-
tion difference, by combining information from several judgements,
especially given that spatial memory for the means is likely to be noisy
and time-limited.

A future goal is to better understand the specific subtasks as well
as the mechanisms by which they are combined. We have begun pi-
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lot explorations, both by considering the subtasks independently and
by better instrumenting our observations of performance of the com-
pound tasks. While our present studies focus on aggregation in scat-
terplots, we hope to consider other tasks to develop and validate a gen-
eral model of non-time-constrained performance in visual aggregation
tasks.

6 CONCLUSION

In this paper, we have studied empirically the human ability to mean-
ingfully, efficiently, and accurately compare average value in multi-
class scatterplots. Using stimuli with longer exposure times and more
varied difficulty levels than in previous work we show that, within rea-
sonable limits, this ability is robust across scatterplots with differing
numbers of points per class, additional distracting classes, and with
additional conflicting cues. Encoding data with redundant cues, which
common wisdom would suggest would be helpful for tasks where
users must select individual classes from a group, is likewise not a
factor in performance. We consider limitations of the mechanisms of
attentional selection that have been established in simpler tasks under
time constraints, and show that they apply in this compound task with-
out time pressure. We believe that our methodology, and our model
of assembling more basic subtasks to achieve compound performance,
is extensible to a wide range of common tasks in information visual-
ization, where users must extract and possibly compare the aggregate
statistics of different classes in a display.
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