The Biasing Effect of Word Length in Font Size Encodings
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Figure 1: To test whether word attributes that should be irrelevant might still affect the perception of their font size, we highlighted words within
word cloud visualizations and asked participants to choose the larger font. On the left, “z00” has the larger font, but the length of “moreover”
can bias participants toward choosing it as larger. On the right, “source” has the larger font, but the taller ascending and descending parts of

“begged” can bias participants toward choosing it as larger.

ABSTRACT

From word clouds to cartographic labels to word trees, many visu-
alizations encode data within the sizes of fonts. While font size can
be an intuitive dimension for the viewer, it may also bias the per-
ception of the underlying values. Viewers might conflate the size
of a word’s font with a word’s width, with the number of letters
it contains, or with the larger or smaller heights of particular char-
acters (‘0’ vs. ‘p’ vs. ‘b’). In an ongoing set of experiments, we
have found that such factors—which are irrelevant to the encoded
values—can indeed influence comparative judgements of font size.
For this poster, we present one such experiment showing the biasing
effect of word length.

Keywords: Text and document data, cognitive and perceptual
skill, quantitative evaluation.

1 INTRODUCTION

As the amount of textual data available continues to grow, new
methods for analyzing these data are of increasing importance. Text
visualizations support analysts in many tasks, including forming a
gist of a collection, seeing temporal trends, and finding important
documents to read in detail. One common method for encoding
data using text rendering is to vary the font size. The importance
and impact of font size as an encoding go beyond visualizations of
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text collections, as words of varying sizes are embedded as labels
in many other types of visualizations. Font size encodings can be
seen in word cloud applications [8], cartographic labeling [7], and
hierarchical visualization tools [3].

Despite their ubiquity, however, there is some question of how
effective people are at interpreting font size encodings [4]. Con-
cerns about these encodings arise in part because there are many
ways in which words vary with one another outside of font size. In
particular, a word’s shape can vary tremendously. Longer words
with more letters take up more area on the screen. The glyphs for
some letters are inherently taller or wider than others. Kerning and
tracking can create diverse spacing between characters. Differences
in font would exacerbate these problems, but even the same font is
often rendered differently depending on the platform. Other poten-
tial factors that could skew perception include color, font weight,
and of course a word’s semantic meaning [1, 5, 6].

In an ongoing set of experiments, we are evaluating the degree
to which a word’s shape can affect comparative impressions of its
font size. Here, we present results highlighting the biasing effect of
word length on perception of font size in word clouds.

2 TASK AND FACTORS

For this experiment, we wanted to investigate the effects of word
length—the number of characters contained within a word—on
perception of font size. Longer words take up more space and often
have a larger area than shorter words of the same or larger font size.
We predicted that these differences in area could interfere with the
ability to perceptually distinguish words by pure font size alone.

In particular, we looked at comparative judgements of size rather
than exact ones, as while reading exact values is not the typical use
case for font size encodings, a designer should still have confidence
that their users’ relative impressions of words are grounded in the
data. Specifically, we focused on the use of word clouds. Word
clouds are both a common medium for font size encodings as well



as a challenging context for reading values, given the dense prox-
imity of distracting words and lack of alignment between words.

Upon being shown a word cloud in which two words were high-
lighted using a darker color (see Figure 1), participants were asked
to click on the highlighted word that had been given a larger font
size. To check for bias, we looked at word length agreement:
whether or not the difference in word length reinforces or opposes
the difference in font size. For example, if the word within a given
pair with the larger font size also contains more letters, we would
say that word length agrees with font size. However, if the word
with the larger font size contains fewer letters, we would say that
word length disagrees with font size. If both words are the same
length, then the agreement factor is neutral.

3 EXPERIMENTAL DESIGN AND RESULTS

We showed participants word clouds created using the D3 visualiza-
tion library [2]. For greater control in stimulus generation, we used
words of random characters, excluding characters with ascenders
or descenders (e.g., “h” or “g”) as well as characters of abnormal
width (e.g., “w” or “i”). We enforced a minimum distance between
the two highlighted words, and ensured that they shared no com-
mon horizontal or vertical baselines that would aid in comparison.

We tested two main factors: font size and word length. Both
factors were examined using within-subject comparisons. Font size
for the first target word was either 20px, 21px, or 22px, while font
size for the second word was either 20px or 22px. Length for both
target words alternated between 5 characters and 8 characters. The
full combination of these factors created 24 conditions, of which
16 had a “correct answer” (i.e., one of the words had a larger font
size), and 8 of which did not (i.e., the words were the same font
size). This allowed us to observe both instances of factor agreement
and disagreement, as well as see which way people leaned at the
extreme marginal case where the sizes were, in fact, equal.

We tested 31 participants recruited from Amazon’s Mechani-
cal Turk framework—all native English speakers residing in North
America with at least a 95% approval rating. Each saw 150 stimuli
(6 per each of the 24 conditions described above, as well as 6 en-
gagement tests). We analyzed answers to questions with a correct
answer and without a correct answer separately.

For data where there was a correct answer, we calculated the
font size difference (1 or 2 px) and word length agreement (“‘agree,”
“neutral,” or “disagree”) for each stimulus. We then ran a two-way
analysis of variance (ANOVA) to test for the effect of the font size
difference and word length agreement. We saw main effects for
both font size difference (F(1,174) = 24.68, p < 0.0001) and word
length agreement (F(2,174) = 6.09, p = 0.003). Specifically, par-
ticipant performance decreased when the difference in word length
disagreed with the difference in font size, as well as when the dif-
ference in font size was smaller (see Table 1). A post hoc test us-
ing Tukey’s HSD showed that accuracy the “disagree” condition
(M = .83,95% CI [.79,.87]) was significantly different from both
the “neutral” condition (M = .91, 95% CI [.88,.95], Cohen’s D of
0.47) and the “agree” condition (M = .91, 95% CI [.88,.95], Co-
hen’s D of 0.46), though the “neutral” and “agree” conditions were
not statistically distinguishable from one another (see Table 1).

For data where there was no correct answer, we tested to see if
the rate at which participants picked the longer of the two words
was significantly different from chance. Specifically, we calculated
the rate at which each participant picked the longer of the two words
when the font sizes were the same (M = 0.59, SD = 0.17) and ran
a two-tailed, paired Student’s t-test to compare these values against
an equally sized collection of values of 50%. We found that partic-
ipants were significantly more likely to pick the longer of the two
words (t(30) = 2.99, p = 0.005), indicating the same direction of
bias as seen with the data with correct answers.
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Table 1: This table shows the average participant accuracy for each
combination of factors. A two-way ANOVA showed significant main
effects for both size difference and length agreement. A post hoc
Tukey’s HSD test showed that the “disagree” condition (i.e., when the
longer of the two words had the smaller font size) was significantly
different from the “agree” and “neutral” cases, though the latter two
were not distinguishable from one another.

4 DISCUSSION

In this experiment, we saw a consistent bias towards longer words.
Word length, it appears, does affect user perception of font size.
However, user accuracy was higher than we had been anticipating,
with each combination of factors having a mean accuracy of greater
than 75% (see Table 1). Even at very close font sizes, participants
did notably better than chance. Therefore, while a bias does seem
to exist, there may be cause to frust user perceptions of font size
encodings.

However, the number of letters is just one of many features that
factors into the diversity of shapes words can make. We are already
analyzing data from experiments exploring these other features, in-
cluding: differences in the height of individual letters; the different
effects of width, number of letters, and area; and adjustments to the
encoding that counteract this perceptual bias.
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