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Abstract

Word vector embeddings are an emerging tool for natural language processing. They have proven beneficial for a wide
variety of language processing tasks. Their utility stems from the ability to encode word relationships within the vector space.
Applications range from components in natural language processing systems to tools for linguistic analysis in the study of
language and literature. In many of these applications, interpreting embeddings and understanding the encoded grammatical
and semantic relations between words is useful, but challenging. Visualization can aid in such interpretation of embeddings. In
this paper, we examine the role for visualization in working with word vector embeddings. We provide a literature survey to
catalogue the range of tasks where the embeddings are employed across a broad range of applications. Based on this survey,
we identify key tasks and their characteristics. Then, we present visual interactive designs that address many of these tasks.
The designs integrate into an exploration and analysis environment for embeddings. Finally, we provide example use cases for

them and discuss domain user feedback.

CCS Concepts

eVisualization — Information Visualization; Visual Analytics; eArtificial Intelligence — Natural Language Processing;

1. Introduction

Word embeddings are mathematical models that encode word re-
lations within a vector space. They are created by an unsuper-
vised training process based on co-occurrence information between
words in a large corpus. The encoded relations include seman-
tic and syntactic properties of words. For example, word embed-
dings have been shown to reveal semantic analogies [MCCD13]
and groups of semantically related words [PSM14].

Due to their ability to capture word meaning, embeddings
are valuable in many diverse applications. They are particu-
larly popular in natural language processing (NLP) applications
because of their potential to significantly improve accuracy of
language processing methods. Examples include text classifica-
tion [KSKW15], sentiment analysis [YWLZ17], and natural lan-
guage parsing [SBM™13]. Embeddings have also sparked the in-
terest of linguists and researchers from the humanities. For them,
word vector embeddings can provide valuable insights into the use
and structure of language. Examples include etymological studies
of word meanings [HLJ16], and assembling dictionaries [FCB16].

These diverse scenarios come with a variety of challenges to un-
derstand and compare embeddings. They range from learning how
to interpret similarity in the vector space, to understanding the in-
fluence of source corpora on the resulting embeddings. For exam-
ple, neighborhood relations are often used to probe embeddings
for specific information. But, there are many reasons words may
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be close in an embedding. They may have close semantic mean-
ings, or similar syntactic roles within sentences in the source data
set. In addition, embedding algorithms are non-deterministic and
depend on critical input parameters, including the dimensionality
of the resulting word vector space. This can lead to quite different
embeddings even with identical input data sets, making their inter-
pretation [LG14] and evaluation [LHK* 16, BGH* 17] challenging.

Interactive visual interfaces are effective for the task of ana-
lyzing word vectors embeddings, because (1) the problems to be
solved are inherently human-centric and finding solutions involves
enabling expert users to gain a deeper understanding of word em-
bedding spaces, for which visualization is a primary tool, and (2)
while effective visual encodings can make interesting features read-
ily available, human linguistic and domain knowledge is necessary
to drive the process and ultimately define relevant and non-relevant
artifacts of the data and are a strong motivation for interactive visu-
alization. However, such exploratory processes require tightly inte-
grated feedback loops that let users navigate, filter, and drill down
onto aspects relevant to them and their specific analysis goals.

While visualization has been used to analyze word embeddings
in the NLP and digital humanities (DH) literature, it is often based
on standard dimensionality reduction techniques. Such tools con-
vey a rough impression of similarities but fail to serve a broader
range of tasks. Recent work [LBT*17] has identified specific tasks
in analyzing word vector embeddings and shown that these tasks
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can be addressed with visualization tools, but focuses on one par-
ticular task.

In this paper, we bring a broader, task-based design process to the
design of visualization tools for word vector embeddings. We aim
to derive a range of tasks, including investigating neighborhoods
and reconstructed co-occurrences, and aligning word vectors based
on concept axes. We derive these tasks based on domain literature
and collect relevant characteristics of word vector spaces for evalu-
ating, testing, and using them. We then introduce visual interactive
designs to help gain insights into embeddings, and show their capa-
bilities based on use cases. Finally, we briefly discuss domain user
feedback. We see our contributions as:

e A review of domain literature and a collection of domain specific
tasks that word embeddings are used for and evaluated with;

o Identification of the characteristics of word embeddings relevant
for the domain tasks as the targets of practical analysis tasks;

e Visual interactive designs that support several of those tasks.

2. Background and Related Work

Word vector embeddings place words as points in a vector space.
The positions are designed to encode meaning, based on the con-
cept of distributional semantics—the assumption that words that
appear in similar contexts are close in meaning [RG65]. Mean-
ings are captured by statistically quantifying the contexts of a
word across a large body of text. Word embeddings can en-
code semantic similarity by placing similar words close in the
space [PSM14] and semantic analogies, e.g., king is to queen as
man is to woman [MCCD13] as arithmetic operations.

Building a word vector embedding requires a text data set, large
and broad enough to contain ample information about each sin-
gle word. After tokenization, the corpus is processed and converted
into a co-occurrence matrix containing the frequency of two words
occurring together in a window of a certain size. One way of view-
ing word embedding algorithms is as a factorization of the co-
occurrence matrix. This can either be done directly based on the
frequencies [PSM14,MSC*13], or after converting them to another
association measure, €.g., pointwise mutual information [ALL*16].
The embedding algorithms factor the co-occurrence matrix into two
lower dimensional ones that each contain one vector for each word.
The number of dimensions is a free parameter (typical values are
50-300). The two vectors for each word are called word vector and
context vector, respectively. Context vectors are often discarded af-
ter building the model, but can be useful during analysis (see Sec-
tion 4).

While we focus on embeddings of single words, embedding
methods have been extended and improved in various ways. Exam-
ples are embedding entire sentences [ALM17], and methods that
focus on more than one language [ZSCM13], a valuable resource
for machine translation. In addition, they have proven useful for
linguistic studies [HLJ16], and for creating dictionaries [FCB16].

2.1. Model Visualization

Helping stakeholders gain a better understanding of data-driven
models is an important and broad challenge [Gle16]. Visualization

research has approached it from various angles. Several approaches
have inspired and influenced our work.

Readily interpretable models, such as decision trees, allow
methods for direct manipulation [vdEvW11], and model selec-
tion [MLMP17]. However, most embeddings are too complex or
abstract to follow each step of the modeling process, calling for
different strategies. Notable approaches for classifiers are Ensem-
bleMatrix [TLKT], that allows users to combine multiple single
models to improve quality, while Heimerl et al. [HKBE12] let users
interact with and modify a model over multiple iterations. These
approaches are a motivation to provide users insight into word em-
bedding models. However, while direct manipulation techniques
are conceivable for word embeddings in the future, they depend
on effective methods that let users gauge their quality, which we
focus on.

Other approaches create simpler models to help users interpret
complex ones. Dimensionality reduction, such as t-SNE [MHO0S],
creates low-dimensional embeddings of high-dimensional data sets
and retains local similarities to convey neighborhood structure. It is
popular to view local neighborhoods in embeddings, but we found
it to be not helpful for the tasks we aim to support (see §4.1.1 for
details). Explainers [Gle13] and Interaxis [KCPE16] let users de-
fine semantic axes for projection, an idea we will use in §4.3.

Some vector techniques (e.g., Word2Vec [MSC*13]) use neu-
ral networks to construct the embeddings. Visualization approaches
can help in understanding such networks. For example by grouping
and visualizing nodes to understand their role [LSL*17], analyz-
ing the training process [LSC*17], creating abstractions for com-
plicated networks [WSW™17], or conveying local changes in a net-
work [SGPR17]. However, analyzing these network structures does
not help with understanding resulting word embeddings.

Most closely related to ours, there are previous projects that aim
at visualizing word embeddings. Rong and Adar [RA16] focus on
the training process, but do not support tasks to analyze the result-
ing embedding. Liu et al’s. [LBT*17] focus on a subset of tasks that
aim at analyzing analogy relationships in embeddings. Smilkov et
al. [STN*16] aim to support neighborhood analysis tasks using di-
mensionality reduction to create 2D and 3D layouts of embeddings.

2.2. Text Visualization

Topic models summarize text corpora by embedding documents in
a vector space. Visualization approaches for them inspire our work
on word embeddings. Similar to us, Serendip [AKV*14] provides
multiple views on different aspects of a model. Alexander and Gle-
icher [AG16] focus on comparing topic models. We also serve com-
parison tasks with our approach. TopicPanorama’s [WLL " 16] hier-
archical design has inspired our neighborhood view (§4.1), which
provides an overview over change patterns and lets users explore
details on demand. To support search tasks, Choo et al. [CLRP13]
use a 2D layout of documents based on a topic model, inspiring our
2D plots in §4.3.

Visual interactive approaches to text data have a long tra-
dition in visualization research. Jigsaw [SGLOS8] visualizes en-
tity connections extracted from large text collections. Heimerl et
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al. [HJH"16] design a scalable solution for exploration at vari-
ous levels of detail based on a variation of the excentric label-
ing technique [FP99, BRL]. Scattertext [Kes17] tackles the prob-
lem of visually comparing two corpora based on word frequencies.
Collins et al. [CCP09] visualize hierarchical semantic relations be-
tween prominent words in a text. Those approaches are designed
to analyze text data directly, while our focus lies on understanding
word embeddings. One of our tasks aims at co-occurrence patterns,
which have been addressed before. Wattenberg and Viégas [WV08]
visualize co-occurrence sequences using an interactive tree design.
PhraseNets [VHWV09] display more complex phrase patterns as
a graph. While those designs show co-occurrences as longer se-
quences of words, word embeddings encode pairwise statistics, re-
quiring a different solution.

Recently, visual text analysis methods that rely on word embed-
ding techniques have been proposed. ConceptVector [PKL*17] fo-
cuses on text analysis and retrieval based on user-defined concepts
that are built by identifying related words within an embedding.
Berger et al. [BMS17] embed citations from scientific literature
together with words, providing information about the reasons for
a citation. Both approaches use embeddings to analyze text data,
while we aim to provide insight into the embeddings themselves.

3. Task Analysis

We seek to help researchers and practitioners better use word vec-
tor embeddings through improved tools. To best do this, we begin
by identifying the tasks users attempt [SMM12, Mun14]. We base
our analysis on a survey of domain literature. Specifically, we use
a structured literature analysis to understand domain specific prob-
lems and collect tasks. For this, we compiled a representative col-
lection of publications from which we extract relevant tasks based
on word vector properties important to experts.

We rely on literature from the NLP community and related fields.
In addition, we include papers from linguistics and the DH that use
word embeddings. For this, we compile an initial set of articles pub-
lished by the Association for Computational Linguistics (ACL) t,
the primary publication source for word embedding literature. We
did this by querying for all publications that have word embedding
in their title. We then skimmed them for relevant information about
use and evaluation of word embeddings. In addition, we followed
backward and forward citation links to obtain additional relevant
material. Overall, we surveyed 111 papers from a diverse set of
communities, including data mining and human computer interac-
tion. A table of the results, with labels and their descriptions, can
be found in the supplemental material. It includes all 111 papers re-
viewed and lists additional citations mostly from the visualization
community.

Our goal is to understand domain tasks for word embeddings.
For this reason, we do not discuss visualization approaches in this
section, and only focus on tasks and task analyses. In case the re-
viewed papers propose visualizations, we compare them to ours
either in §2 or discuss them as design alternative in §4.

T https://aclweb.org/anthology/
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3.1. Linguistic Tasks for Word Embeddings

Word embeddings are either used as a tool to learn more about
language, or as part of an NLP pipeline. When using word em-
beddings as part of an NLP application, the key human task is to
evaluate the embeddings. Evaluating embeddings is challenging as
there is no ground truth answer, which has lead to a variety of eval-
uation approaches. Evaluation falls into two categories [SLMJ15]:
extrinsic and intrinsic. Extrinsic evaluation, gauges the quality of a
word embedding based on its application scenario in language pro-
cessing [NAM16, YS16]. For example, when an embedding is used
as part of a machine translation pipeline, its quality is measured
through the positive effect on overall translation results. Tasks such
as machine translation do not target embeddings, but specific sce-
narios for NLP applications in which embeddings are just one part
of the pipeline. Therefore, we do not consider extrinsic evaluation
as a source of embedding tasks.

Intrinsic evaluation is a major source of embedding tasks for
users. This type of evaluation seeks to measure the usefulness of
the encoded relations by comparing them to known word relations
based on lexical resources. Examples include semantic similarity
of words or analogy relations [LG14]. Intrinsic evaluation is usu-
ally based on human-coded data sets in which these relations are
encoded explicitly. In addition, examples of such relations are used
in the literature to give readers a qualitative notion of embeddings,
e.g., by listing the nearest neighbors of selected words [YWL*16].
Because they are based on human linguistic knowledge and pro-
vide direct insight into encoded relations, they are highly relevant
for identifying important characteristics of embeddings.

In addition, we include practical analysis tasks from other do-
mains, such as the DH in our task analysis. Because intrinsic evalu-
ation focuses on linguistic relations, tasks from both domains over-
lap to a certain extent. For example, an intrinsic evaluation might
look at synonymy between words. Similarly, DH researchers might
be interested in exploring synonymy relations within the specific
data set the embedding was trained on. Tools for discovering and
analyzing synonymy can help both groups.

linguistic tasks characteristics examples

rank word pairs similarity [BDK14,PSM 14]
compare concepts average, similarity [RBS17,SLMI15]
find analogies offset, similarity [SLMJ15,L.G14]
view neighbors similarity [HLJ16, YWL* 16]
select synonyms similarity [BDK14,FDJ* 14]
project based on concepts concept axis [BCZ*16,FRMW17]
predict contexts co-oc. probability [SN16,LIW*15]

Table 1: Linguistic tasks for which word vector embeddings are
used. The tasks are based on domain literature, with examples
listed for each one.

The literature provides a range of analysis and evaluation pro-
cedures. We have extracted a list and abstracted them into a set
of linguistic tasks, listed in Table 1. The second column of the ta-
ble lists vector operations used to extract the information encoded
within the embeddings, while the third column lists a small num-
ber of example publications for each of the linguistic tasks as an
illustration. The tasks comprise:

e rank word pairs
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The task is to rank word pairs in order of descending similarity.
Evaluation data sets contain pairs ordered by human annotators.
To create an ordering based on embeddings, cosine similarity
is mostly used to quantify similarity and order word pairs. The
evaluation metric is the correlation between those results and the
human-generated ones, e.g., [PSM14].

compare concepts

We use the term concept to denote an arithmetic structure ob-
tained by averaging a set of word vectors to encode a com-
mon concept. For example, a concept can represent the se-
lectional preferences of a verb [BDK14], or phrases and sen-
tences [RBS17]. The goal is to evaluate the similarity between
a concept and a word (or another concept), e.g., to find nouns a
verb prefers as objects. Again, cosine similarity is mostly used
to quantify similarity.

find analogies

Evaluations based on word analogies use lexicons that contain
tuples of word pairs where both pairs have the same relation.
Those relations can be of different grammatical types. Exam-
ples are woman is to man as queen is to king, and flying is to
flew as helping is to helped. Evaluations based on such analo-
gies are done by guessing one of the components of an anal-
ogy. For this, similar vector offsets between both elements of
a pair (e.g., v(woman) — v(man) ~ v(queen) — v(king)) are as-
sumed [MCCD13]. The missing component can then be iden-
tified through a nearest neighbor search (e.g., v(queen) as the
nearest neighbor of v(king) + v(woman) — v(man)).

view neighbors

Viewing and comparing the neighbors of single word vectors is
often used in the literature as a form of qualitative evaluation of
the word space, for example in [YWL*16]. In addition, linguistic
studies into changes of word meaning over time have been based
on comparing nearest neighbors of a word across multiple vector
embeddings trained on corpora from different eras [HLJ16].
select synonyms

For a given word, the goal is to select a synonym from a list
of candidate expressions. An example for this is selecting a syn-
onym for rug from sofa, ottoman, carpet, and hallway [FDJ* 14].
This particular evaluation strategy is almost identical to ranking
word similarities, but only focuses on semantic relations. Again,
it is typically solved by selecting the candidate expression that is
closest to the vector of the given word based on cosine similarity.
project words on concept axes

Projections of a selected set of word vectors onto an axis that
represents a certain concept is used in the literature as a way to
qualitatively explore word embeddings. This is typically done
by using the difference between two words that represent two
opposite concepts (e.g., happy and sad). The set of word vectors
is then projected onto this axis through a linear projection. De-
pending on the encoded information within the embedding, their
position can be interpreted as a word’s affinity to each of the op-
posing concepts. One usage example of such projections is iden-
tifying gender biases encoded in word embeddings [BCZ*16].
predict contexts

The most common word embedding algorithms encode co-
occurrence frequencies or probabilities between words in the
training corpus. Co-occurrence probabilities have been used to
evaluate word embeddings based on sentence completion data

sets that contain sentences that miss one word. Word embeddings
can be used to predict the correct word by averaging the predic-
tions of all words in the missing word’s context [LJW™*15].

3.2. Characteristics and Practical Tasks

Table 2 lists four characteristics of word vector embeddings (rows
1 through 4) that are pertinent to the linguistic tasks. We link each
to two practical tasks that help analyze these characteristics in em-
beddings, and support the linguistic tasks. There is thus two dif-
ferent sets of tasks mentioned in this section, the linguistic tasks
that word embeddings are used for, and the practical tasks that help
users understand word embeddings. The latter are derived to help
users analyze embeddings for specific linguistic tasks. Based on the
terminology by Schulz et al. [SNHS13], each of the characteristics
is linked to a rarget, which is an aspect of a data item that a task
focuses on. Following [Mun14], we define tasks as actions (verbs)
and targets. Table 2 provides tasks for both single targets and com-
parison (multiple targets). Comparison tasks can either focus on
targets from different embeddings, or on multiple targets from a
single embedding.

characteristic | single target multiple targets

similarity (1) inspect local neighborhood (2) compare local neighborhoods

average, offset (3) inspect arithmetic structure (4) compare arithmetic results

co-oc. probability (5) analyze encoded probabilities (6) compare probabilities

concept axis (7) analyze vector relations (8) compare vector relations

multiple (9) discover interesting aspects (10) compare interesting aspects

Table 2: Ten tasks that help users understand and compare word
vector embeddings. The tasks cover different levels of granularity,
from exploratory ones to ones targeted at specific characteristics.

The first characteristic listed is similarity. Similarity among vec-
tors, most commonly quantified by the cosine between them, is the
most common way of evaluating and comparing linguistic relations
between words. Here, inspecting the structure of neighborhoods
can help understand what similarity means for a certain embedding.
For example, a user might be interested in what type of relations the
nearest neighbors have to a specific word, and whether they tend to
be more of a syntactic or a semantic nature. In addition, comparing
the similarities and differences in the neighborhood of two differ-
ent words helps understand aspects in which they differ. Similarly,
comparing neighborhoods for words across embeddings helps to
understand what discriminates different embeddings.

The next characteristic are arithmetic structures that represent
meaning in the embedding space. They are derived from basic word
vectors through arithmetic operations. In the literature we mainly
found two different operations to create new vectors: averaging
words to encode a joint concept, and vector differences (offsets)
to represent specific relationships between words. Here, analyzing
and comparing such structures the same way as regular word vec-
tors, i.e., based on their local neighborhoods, helps understand the
concepts they represent. In addition, finding interesting relations
within the space by identifying meaningful vector offsets is an-
other challenge that can help to uncover hidden structure within
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an embedding. Again, comparing those relations between embed-
dings can provide valuable insights into differences in the encoded
relations .

Analyzing word co-occurrence probabilities helps uncover dis-
tributional information encoded within an embedding model from
the source corpus. While this information can be used to gauge the
likelihood of a sentence, either to complete it or to find errors, it
can also help to learn about the influence of the underlying cor-
pus on an embedding. For example, a user might be interested in
learning the co-occurrence differences between two words in two
embeddings trained on different corpora to understand why their
similarity differs in both models.

As described above, laying out words according to axes that dis-
tinguish between two opposing concepts reveals substructures of
the embedding. The concepts can be of different types, depending
on a user’s analysis goal. Analyzing and exploring such a mapping
within one embedding helps uncover latent structures in the vec-
tor space. Comparing them between different embeddings can help
gauge the influence of corpora, algorithms, and parameters on cap-
turing such structures.

The two final tasks in Table 2 target high-level characteris-
tics [SNHS13] of an embedding, and are not directly derived from
the linguistic tasks in §3.1. They are included because providing
global overviews is an important first step in a large variety of anal-
ysis scenarios [Shn96]. However, these tasks are still motivated by
our findings from the review. In a significant portion of the litera-
ture, exploratory methods are used to assess the results of embed-
ding algorithms. They help to initially gauge an embeddings quality
and identify potentially interesting properties for closer scrutiny.
The importance of exploratory methods has therefore been ac-
knowledged in the literature [GD16]. Moreover, word embedding
users from the DH community rely on exploration of embeddings to
find interesting connections, as numerous blog posts form this com-
munity show?. Exploration, for example, can start with some text of
interest to a researcher, such as a specific novel, whose language is
to be analyzed based on embeddings. While these methods are seen
distinct from evaluation with annotated resources, those resources
can be used in an exploratory environment to help guide users to
interesting local phenomena, for example, clusters of words with a
particularly high error rate.

4. Interactive Exploration of Embeddings

Most, if not all, of the identified tasks can benefit from appro-
priately designed visualizations. However, existing ones show the
global structure of the space (e.g., a t-SNE embedding) or focus
on analogies (e.g, [LBT*17]) and therefore do not address most of
these tasks directly. To complement these existing visualizations,
we consider designs that address three other key task groups: ex-
ploring neighborhoods, reconstructed co-occurrences, and mapping
words to concepts. In contrast to previous approaches, we thereby

 two examples are: http://bookworm.benschmidt.
org/posts/2015-10-25-Word-Embeddings.html and
http://ryanheuser.org/word-vectors-1
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Figure 1: The ten nearest neighbors of elephant. Distance on the
axis encodes distances from the selected word in the embedding
space. To get a sense of the density of the neighborhood compared
to others in the embedding, hovering the gray padding shows a tool
tip with the quartile in which the size of the neighborhood falls (<=
Q2 means that the shown neighborhood is in the second quartile).

focus on locally confined relations among a limited number of vec-
tors.

For the examples and screen shots in this section, we use embed-
dings from two different corpora, both using GloVe § (window size:
15, dimensions: 50). The first one is trained on the EEBO-TCP ﬂ,
a corpus that contains a collection of historic English texts from
before 1700. The second one is trained on the English wikipedia.

4.1. Local Neighborhoods
4.1.1. Inspecting Single Neighborhoods

Task (1) in Table 2 is inspecting local neighborhoods. For this,
users should be able to view the closest neighbors of a vector, and
get a sense of the distances relative to others. In addition, having
a means to judge the relative density of the neighborhood within
the embedding helps gauging the significance of the neighbor rela-
tion. The proposed design to inspect neighbors also serve task (3),
inspecting arithmetic structures. One of their important aspects is
their local neighborhood [MCCD13].

Our design is shown in Figure 1. It depicts the nearest neighbors
of a chosen word as points along an axis. Our examples use the
cosine distance as this is the most common choice in the literature.
Compared to an ordered list, in this design, the distances between
the selected word and each of the neighbors reflect those in the em-
bedding. An issue with this design is that while distances to the
chosen word are represented accurately, those between neighbors
are not. An obvious alternative would be a 2D scatter plot of vectors
in a local neighborhood. According to our experience, the popular
2D projection methods (including PCA, MDS, and t-SNE) are able
to retain some of the pairwise differences, with MDS producing the
most interpretable results for a small local set of word vectors (10-
20). However, while the resulting 2D displays convey additional
information about neighborhood structure, it remains unclear how
much of it is noise that is captured in the process as compared to
relevant semantic structure. This makes interpretation, and in par-
ticular comparison across embeddings challenging. We were thus
unable to find a concise visual encoding, and see the 1D plots as
a good trade off between providing insight into local distances and
facilitating comparison (see §4.1.2).

One challenge with single neighborhoods is providing context

§ https://nlp.stanford.edu/projects/glove/
Al http://www.textcreationpartnership.org/tcp-eebo/
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Figure 2: Comparing the differences in neighborhoods between
uncle and aunt. The colors on the first axis encode positions in the
second axis. We can see that there is no overlap between the neigh-
borhoods, but that one nearest neighbor of uncle is closer than the
others to aunt (it is selected and linked across the axes). Hovering
it reveals that it is the word cousin (shown by the tooltip).

about its density relative to others in the embedding. This informa-
tion helps to gauge how meaningful the neighborhood relationship
is. If the nearest neighbors are comparatively far from the selected
word, the fact that they are its nearest neighbors might not mean
that they share any relevant properties. To solve this, each neigh-
borhood has a grey padding behind the axis that reveals a tool tip
with the quartile of neighborhood sizes in the embedding it falls
into (see Figure 1). As described later in detail, the grey padding is
also important when comparing multiple neighborhoods and their
relative sizes.

Users can choose an interesting word whose nearest neighbors
they want to inspect, and the size of the neighborhood to display.
While qualitative analysis of nearest neighbors in the literature typ-
ically uses a very small number of neighbors (3-5), we found that
10 is a good number for many scenarios. Figure 1 shows the 10
nearest neighbors of elephant in the wikipedia embedding as an
example. We can see that all the nearest neighbors are semantically
related to elephant (it is apparent that they all share the same hyper-
nym animal). In addition, we can see the plural of elephant as its
second neighbor. This gives us first insights about how to interpret
similarity in this embedding.

4.1.2. Comparing Multiple Neighborhoods

Task (2) from Table 2 is comparing multiple neighborhoods. In ad-
dition to comparing the set of neighbors, differences in their rank,
and the absolute and relative distances to the chosen word are rel-
evant. Comparing neighborhoods of word vectors helps to gauge
aspects in which words are similar or differ within the embedding
(see example below). Again, similar to the previous designs, this
one also serves task (3), as comparing neighborhoods provides use-
ful insights into similarities and differences of arithmetic structures.
In particular, comparing the neighborhood of arithmetic structures
to those of word vectors, can provide valuable insights (see exam-
ple below).

We extend the previous design using ideas from buddy
plots [AG16], and stack multiple axes, each of which depicts the
neighborhood of one word in an embedding (see Figure 2). The
distance from the selected word in the selected embedding for each
axis is again encoded as position. In addition, the position of each
word on the axis following the current one is encoded using a color
ramp. For reference, the color ramp used is shown on top of the
plot. Words on the last axis are colored black. Since the sets of near-
est neighbors likely contain different words across the axes, they
show the union set of all neighborhoods to keep them comparable.
The n nearest neighbors (n chosen by the user) are marked by a gray

padding on the left side of each axis. When neighborhoods across
different embeddings are compared, some of the embeddings may
not contain all of the words. Their circles are consequently omitted
on the respective axis, and are marked black on the preceding one.
In order to explore neighborhoods and highlight differences, users
can select single words, which are then connected through a line
(cousin in Figure 2).

As the design facilitates comparison between neighboring axes,
their order is relevant to allow for pairwise comparison if a natural
ordering exists (see §6 for an example). Depending on the scenario,
users may want to change the reference axis for the color coding to
quickly compare different axis pairs. To support this, users can se-
lect an axis, which then becomes the reference for all others. The
other axes then encodes the distances on the selected one as color,
allowing for a pairwise comparison between one axis with all oth-
ers. The selected axis encodes the same distances twice, resulting
in a perfectly smooth gradient (see second axis in Figure 3).

The proposed design lets users easily identify differences from
one axis to the next one: the smoother each gradient is for an axis,
the less changes there are in the order of neighbors compared to the
following axis. While color is not the most effective visual variable
to encode absolute positions, changes in relative position can be
easily discerned as breaks in the color gradient. The most promi-
nent design alternative is one based on parallel coordinates, link-
ing points on neighboring axes through lines. However, while the
number of edge crossings would give an impression of the degree
of changes between axes, such a solution is very prone to clutter,
hindering comparison, and, in particular the identification of single
words that change position. In addition, changing the reference axis
for comparisons would not be possible without reordering the view
for each pairwise comparison, which would demand lots of interac-
tions from users. Another design option is to directly show the word
of each neighbor along the axis. Parallel Tag Clouds [CVWO09] is
an approach that facilitates comparison among multiple corpora by
laying out word clouds along an axis for each of the corpora and
marking overlaps. However, in our case, the number of overlaps
tends to be very high, which would lead to constant repetition of the
same words. In addition, showing terms constantly introduces lots
of clutter that hinders the identification of change patterns across
multiple axes. For this reason, we have decided to omit words by
default, and offer advanced tool tips that show the words for single
axes on demand (as illustrated in Figure 3).

Figure 2 compares ten nearest neighbors of uncle to aunt. Based
on their color, we can see that all of them are further away from
aunt than they are from uncle. Inspecting both neighborhoods re-
veals that they mostly contain female family relations for aunt and
male ones for uncle. The word from the neighborhood of uncle that
is closest to aunt (the selected and linked one in Figure 2) is the
gender neutral cousin.

We now compare two offsets to capture the difference in mean-
ing between aunt and uncle, namely the offset between man and
woman and that between brother and sister. Figure 3 compares the
neighborhoods of both offsets added to aunt. In addition, we com-
pare both of the neighborhoods to uncle, to get a sense of their sim-
ilarities and differences. Both structures have uncle as their nearest
neighbor (the two black circles). While the bottom structure seems
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Figure 3: Comparing the offset between man and woman and that
between brother and sister when added to aunt to the word uncle.
The axis for uncle (red) is selected as the reference for the oth-
ers. This reveals an interesting pattern. Both resulting vectors have
uncle as their nearest neighbor (the two black circles). While the
bottom structure seems to have a similar neighborhood to uncle
(most of the words are male relatives, including brother, nephew,
and grandfather), this is not true for the vector on top. The words
are shown as tooltips when hovering them with the mouse, either
individually, or, as shown for the bottom axis, for an entire axis.

to have a rather similar neighborhood to uncle (most of the words
are male relatives), this is not true for the one on top. Most of its
nearest neighbors are disjunct with those of uncle. Inspecting them
more closely reveals that they are either words denoting female
relatives (e.g., aunt), or more general terms (e.g., boy). Based on
this, we can hypothesize that while vec(man) — vec(woman) cap-
tures the male to female relation in general within the vector space,
vec(brother) — vec(sister) more accurately captures the more spe-
cific female relative to male relative relation.

4.2. Approximate Co-occurrence Patterns

Tasks (7) and (8) target co-occurrences encoded within a model.
Embedding algorithms are constructed in a way that some measure
of co-occurrence is retrievable from the model for a word pair af-
ter training. We use this to visualize approximate co-occurrences
encoded in the models. This is helpful to interpret and understand
results when embeddings are used for context prediction (see §3).
Analyzing the encoded co-occurrences also provides useful in-
sights into the underlying corpus. While directly showing values
from the training corpus is intractable, we use these co-occurrence
estimates instead. In addition, it can help to debug embeddings (see
§6 for an example).

To support the task of analyzing and comparing reconstructed
co-occurrences, we use a matrix-based design (Figure 4). Each row
corresponds to a word, with their co-occurrences along the columns
of the matrix. Co-occurrence strength is encoded using color, with
a legend to the right of the matrix. We have explored alternative
designs, most notably rows of bar charts, but found that color en-
codings allow for easier comparisons, and finding patterns. Another
notable alternative to visualize co-occurrences is an interactive,
tree-based design [WVO0S] that allows co-occurrence frequencies
in arbitrary window sizes. However, for our scenarios such a de-
sign is not viable because word embeddings only encode pairwise
co-occurrences within a fixed size window.

Typical word embeddings have vocabularies of well over 1m
words. A critical design decision is thus to select co-occurrences
that help users with their tasks. Our design is based on the ex-
perience that it is often a set of words whose reconstructed co-
occurrences are analyzed. Therefore, users can choose a set of
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Figure 4: Comparing the reconstructed co-occurrences between
a set of words. The rows of the matrix show selected words, the
columns show the reconstructed co-occurrences (the set of recon-
structed co-occurrences shown as columns in the matrix is selected
based on their high variance between the selected words). Color
encodes the reconstructed strength of co-occurrence. Words that
denote family relations and nobility titles have higher reconstructed
co-occurrence strengths with the first four terms.

words that they want to investigate. Based on these, we select in-
formative reconstructed co-occurrences that provide insight into
the similarities and differences between the selected words. We
have experimented with absolute counts to select reconstructed co-
occurrences, however, this results in the most common words to
show up, even after filtering stop words.

An alternative strategy we found to work well is selecting the re-
constructed co-occurrences with the highest variance between the
words. For this, we create a list of reconstructed co-occurrence
strengths for each selected word with each other word. We then cal-
culate the variance of these reconstructed co-occurrences between
the selected words for each embedding. The co-occurring words
with the highest variance are selected and displayed as columns
in the matrix, sorted by variance. Even though the process involves
many vector products, the computation only takes a few seconds on
a modern machine (see §5 for implementation details). While this
strategy tends to yield informative reconstructed co-occurrences,
users can freely add additional columns to the matrix based on their
analysis goals.

Figure 4 shows the strongest reconstructed co-occurrences for
the vectors aunt, uncle, sister, brother, woman, and man. Inves-
tigating the matrix, we get interesting additional insight that cor-
roborates our hypothesis from §4.1. Again, we can see a lot of
words that denote family relations. Perhaps not surprisingly, they
co-occur more frequently with other words that denote such rela-
tions and that we have queried for. They appear less with the more
general man and woman. In addition, we can see that female rel-
atives co-occur more frequently with aunt and sister, while male
ones occur more frequently with uncle and brother. On the other
hand, man and woman does not show such a pattern. These gives
us an idea about some of the patterns that lead to the findings from
§4.1. In addition, we can see that, although not as pronounced, male
and female nobility titles (including king, prince, and duke) show a
similar reconstructed occurrence patterns than family relations. We
hypothesize that this is due to the fact that wikipedia lists in par-



F. Heimerl & M. Gleicher / Interactive Analysis of Word Vector Embeddings

> o RN
oS & 2 @ & L O X '\

e & S & S & &S N SoFa D A

0 @00 PFO 8 L@ Fd & LS
S F S S LEPCEE T Ff P o

FEF LS
manE%D\ [T o T 0 O OO0 0 0 esso_tce
5 o N wikpegia WM hish

n
wee O E REEES B0 OO oo O esoce &

OOO000CL OO 8 [ wikipedia low
Figure 5: Comparing the highest reconstructed co-occurrence dif-
ferences between man and uncle across two different embeddings.
Color encodes reconstructed co-occurrence strength. The fully
filled matrix cells are those selected because of their high vari-
ance between the words (lines) in the corresponding embedding.
All others are included for comparison. Nobility titles are more pro-
nounced for uncle, especially in the EBBO-TCP embedding.

ticular male family relations with nobility titles when discussing
successions, thus revealing a bias of the underlying corpus.

The design also supports comparisons between multiple em-
beddings (see Figure 5). Each of the embeddings has a distinct
color hue, while reconstructed co-occurrence strength is encoded
as lightness. For each of the user-selected words, the reconstructed
co-occurrences for each of the embeddings are shown in adjacent
lines in the respective colors. Since a user-selected number of high-
variance co-occurrences is extracted individually for each of the
embeddings, some of those words can overlap. As a potential de-
sign alternative, we considered an interlaced version of the matrix,
similar to [ABHR*] that encodes multiple values for different em-
beddings per cell. Due to the difficulty of encoding values for more
than two embeddings, we decided in favor of the multi-row ap-
proach. Rows with reconstructed co-occurrences for different em-
beddings are grouped by user selected words, allowing for easy
comparison of values between embeddings.

As the variance-based selection measure may yield different
words for each of the embeddings, we show their union set. Words
whose cells are not fully filled for a particular embedding are not
among the selection. While using area is generally a more effec-
tive visual variable for continuous values, such as co-occurrence
strengths, we found that using it for that purpose leads to matrix
rows that seem to be discontinuous in their shape, rendering them
harder to read and compare. We thus use it to encode a binary vari-
able, while we use color for reconstructed co-occurrence strength.

Figure 5 shows an example where we have queried for two
words, man and uncle. Both embeddings yield quite different pat-
terns, with 10 overlapping words out of 20 extracted for each em-
bedding. Based on our experience, 20 co-occurrences are a good
first choice to get an overview. Interestingly, the nobility pattern is
even stronger for this second embedding, with uncle having high
co-occurrence strength with, for example, duke and king. While
this is not surprising given the fact that EEBO-TCP contains his-
toric texts that are more then 300 years old, it illustrates influences
of the base copora on the embeddings.

4.3. Mapping to Concept Axes

To support tasks 7 and 8, analyzing and comparing word vector
relations based on concept axes, we allow users to define their own
axes to lay out word sets. Mapping a set of words to concept axes

26 rabbit
.

food-pet (wikipedia)

deer
sturgeon

12 Ta 16 18 20 22

food-pet (EEBO-TCP)

Figure 6: Words for animals projected along the axis food - pet on
two different embeddings. Exploring this space provides insights
into the influences of different corpora on the resulting embedding.
The lens facilitates exploration by summarizing words underneath
it.

conveys a sense of similarities within the embedding space. Un-
like inspecting local neighborhoods, however, they provide a more
global picture of similarity relations relative to two opposing con-
cepts. Users may want to compare the same axes in two different
embeddings, or different axes from the same embedding.

Our environment features a design based on the classical scatter
plot to lay out word vectors along two axes. Scatter plots are used in
some of the literature we reviewed to show linear projections, e.g.,
in [JD14]. While an alternative would be to use a combination of
position and color encoding, similar to the one in §4.1, scatter plots
are easier for gauging correlations between both axes, and identify-
ing outliers. This is relevant to identify similarities and differences
between the two axes. The idea of letting users define axes to lay
out data for analysis has been explored before. Explainers [Gle13]
and InterAxis [KCPE16] are both approaches that let users define
such axes based on example data. While both approaches feature
scatter plots to visualize such axes, the former introduces an alter-
native visualization that aligns data items and labels along a 1D
axis. As this design does not facilitate comparison between two
axes, we use 2D scatter plots.

Users can load a set of words and an embedding and select two
words that represent opposing concepts to define an axis. For each
axis, vectors of the selected word list are projected onto the differ-
ence vector between those concepts. Figure 6 shows the result of
such an operation. In this example, both axes show the same con-
cepts, while the embeddings they are based on differ. Both axes are
labeled accordingly. In addition to visually analyzing correlations,
there are additional features to look into local phenomena of the
point clouds. Hovering an item with the mouse shows a tool tip
with the respective word. This is shown in Figure 6 for the word
rabbit.

For exploration, a magic lens [BSP*93] is available that summa-
rizes the area of the scatter plot it hovers over [HIH* 16], based on
excentric labeling [FP99,BRL]. While an alternative method would
be to statically label areas of the space, this lens-based interactive
design gives users the flexibility to explore the space at various lev-
els of granularity. It can be dragged across the space, showing the
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words underneath in a list next to it (see Figure 6). This list con-
tains a maximum of around 10 words to keep it easily readable.
Users can activate links between the words and their points, which
are deactivated by default to reduce clutter (see Figure 10). If more
than 10 words are hovered, clusters of similar ones are condensed
into one. Clustered words in the list are marked in blue (see deer
in Figure 6, which is clustered together with cow in the example),
and clicking them reveals all words they summarize. For summa-
rization, we use the word similarities based on the embedding, and
replace a set of similar words with their centroid (see §5 for imple-
mentation details). While this has the downside of using the em-
bedding we want to analyze for the abstractions, with the potential
of distorting results, we have decided in favor of this heuristic be-
cause it does not require users to provide any additional source of
data about the embeddings or its corpus. This renders the approach
applicable much more broadly.

Figure 6 shows a scatter plot for the axis food — pet in our two
embeddings. The selected word list contains 483 animals. Words
towards the bottom of the plot are closer to the food concept in
the wikipedia embedding, while those towards the left are closer
to food in the EEBO-TCP embedding. Conversely, words towards
the top and right of the plots are close to the per concept in the
respective embedding.

We have noticed differences in both embeddings with respect to
food items, especially different types of meat. We are interested in
analyzing this further and gain insights into how the underlying cor-
pus contributes to this. Starting to investigate Figure 6, there seems
to be a weak linear relationship between both dimensions with a
large number of outliers. Using the lens to investigate this further,
we can see that the bottom left of the space contains animals that
are typically used as food, including fish and chicken, but also less
clear cases such as horse and bird. Looking into those, we can see
that both are in the top right corner of the hovered space. One ap-
parent outlier on the top catches our attention. Hovering it reveals
that it is the word rabbit. We hypothesize that while being a source
of food in the past, rabbits nowadays are often kept as pets. Con-
tinuing with this analysis, we can learn more about the biases that
corpus selection has on resulting embeddings.

5. Implementation

The implementation is based on common web technologies. All
embedding processing is done within a Python-based (Python 3.6
with numpy) back end, providing interactive response times. Al-
though our implementation is model agnostic, our examples were
created with GloVe or word2vec. We use the flask web framework
to interface with the front end in the browser, which is implemented
in javascript (using d3.js and jQuery UI). Our implementation is
available as open source software, including a docker image for
simple deployment. Links are available on the project page I 1t
can be deployed locally or publicly, e.g., using virtual server in-
frastructure.

One challenging implementation aspect was to ensure interac-
tive response times for the lens (§4.3). To retrieve and summarize

l https://graphics.cs.wisc.edu/Vis/EmbVis
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Figure 7: Nearest neighbors of the word broadcast in multiple word
embeddings trained on corpora from different decades. The 1990s
embedding is selected and the color on each axis encodes distance
on the 1990s axis. Prior to 1930, words close to broadcast in the
1990s (red marks) are farther from it. The word stations is selected
and linked across the axes. The color ramp is chosen for clarity in
print.

words efficiently, we use a quadtree to speed up both processing for
a given 2D projection. To ensure the list is no longer than ten words,
we replace sets of words with their centroids in the embeddings,
stored in intermediary nodes of the tree. These abstractions are at-
tached to the quadtree in the server and sent to the client once for
each plot. This process yields interactive rendering rates for smooth
exploration.

6. Use Cases
6.1. Changes on Word Meaning

Word embeddings are used to study changes in word meaning
over time, for example by Hamilton et al. [HLJ16]. For their
project, they train multiple embeddings on the English Google
Ngram corpus that contains ngrams of books in the Google book
database from the 16th to the 21st century. We use their embed-
dings trained for each decade from 1800 to 1990 (with skip-gram
word2vec [MSC*13]). Here, we show how to use our methods
to quickly get insight into how a word’s meaning changed and
whether we can find evidence for this change in the embeddings.

One particularly interesting case to look at is the word broad-
cast [HLJ16]. Its use until the early 20th century denoted sowing
a field by scattering seeds. With the introduction of radio technol-
ogy, its meaning changed to the distribution of information through
electromagnetic waves [JL79]. We investigate this change using our
neighborhood comparison method with embeddings from 1860 to
1990 (earlier ones do not contain the word broadcast). This results
in a plot that reveals a fair amount of new words that enter the
neighborhood of broadcast until the early 20th century, based on
the color of some of the circles. Since many of the changes are
technical terms, we hypothesize that these are due to progress in
sowing technology at that time.

Inspecting the neighborhoods more closely, we identify the
decade of the 1920s as a potentially major turning point. We can
see that almost all of the neighbors from the 1920 embedding get
replaced in the embedding from the 1930s. This coincides with the
history of radio transmission, which started in the 1920s (Hamilton
et al. [HLJ16] also identify this turning point).
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Figure 8: Comparing reconstructed co-occurrences between em-
bedding 2 and 3 trained on the wikipedia data set. Color encodes
co-occurrence strength. The fully filled matrix cells are those se-
lected because of their high variance between the words (lines) in
the corresponding embedding. All others are included for compar-
ison. Generally, aunt has very low and uniform co-occurrence val-
ues in embedding 3, compared to embedding 2.

To get a better picture of the entire time line, we select the 1990s
as the reference point for all axes (see Figure 7). Since broadcast
has almost completely lost its original meaning today [JL79], this
gives us decades in which it had a roughly similar meaning to to-
day, and ones in which it had a different one. We can see a clear
separation between the decades before 1920, and those after it. In
addition, the 1930s seem to have had more changes compared to
1990 than later decades. Inspecting some of the words that later
leave its neighborhood reveal that they are all related to sowing,
while the one that moves significantly closer is the term television,
which was invented in the 1930s. Another interesting case is the
word stations, which is selected and linked by lines across the axes
in Figure 7. It moves into the neighborhood of broadcast from a
place far out.

6.2. Stability of Embeddings

One common concern about word embeddings is the non-
determinism of embedding methods, resulting in unstable neigh-
borhoods [HH16]. Our tools can be used to assess this issue. We
explore the examples of the previous section by creating five em-
beddings using the same algorithm (GloVe) and window size (15).
This strategy is similar to the one that Hellrich and Hahn [HH17]
use for their study.

We start by comparing the neighborhoods of words in the dif-
ferent embeddings using uncle from §4 as the example. The result
shows that four of the embeddings have nearly identical neighbor-
hoods, but that there is one outlier, embedding 3. Interestingly, it
has very little overlap with the neighborhoods from the other em-
beddings. Inspecting the exceptions reveals that those are brother,
sister, and daughter. Looking at the five neighborhoods of aunt re-
veals that the situation is similar for it, with no overlap in its neigh-
borhood between embedding 3 and the others. Being trained on
the same corpus and with the same parameter settings, these differ-
ences seem surprising.

To investigate these differences further, we look at the encoded
co-occurrences between aunt and uncle, which shows only mi-
nor differences between embeddings 1, 2, 4 and 5. When com-
paring each of them to embedding 3, however, we see major dif-
ferences. This is illustrated by the comparison of embedding 2
with 3 based on uncle and aunt as shown in Figure 8. In em-
bedding 2, as we would expect, aunt appears more in the context
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Figure 9: Comparing the neighborhoods of vec(aunt) —
vec(sister) + vec(brother) across five embeddings trained with the
same parameters and on the same corpus (wikipedia). One of the
embeddings, embedding 3 (selected) shows a very different neigh-
borhood than all others.
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Figure 10: Comparing family relations along the uncle - aunt axis
in embedding 2 and 3. For the figure, two lenses are shown in the
same plot. The lower one has links between words and their points
activated. Surprisingly, there is no correlation between word posi-
tions in both embeddings.

of female honorifics (lady, madam), and female family members
(sister, daughter). However, in embedding 3, aunt’s reconstructed
co-occurrences look very uniform. In comparison, while the en-
coded co-occurrences of uncle also differ to some extent between
both embeddings, coinciding with the differing neighborhoods dis-
cussed previously, the differences are much less pronounced and
within a conceivable range.

We wonder how these differences influence arithmetic struc-
tures based on these vectors. For this, we use the analogy from
§4: vec(aunt) — vec(sister) + vec(brother). Comparing neighbor-
hoods, embedding 3 again stands out. While all other embeddings
yield uncle as the nearest neighbor, and have very little variance in
terms of their neighborhoods, the nearest neighborhood in embed-
ding 3 is exciseable follow by zealously, two apparently unrelated
and unexpected words. Figure 9 shows the neighborhood plot, com-
paring embedding 3 (selected) to all others.

For a more global picture of differences, we compile a list of 21
family relations, and lay them out according to the uncle - aunt axis
in embedding 2 and 3 (see Figure 10). We would expect male and
female terms to spread out along this axis, with male terms closer to
uncle, and female terms closer to aunt, with a high level of correla-
tion between both axes. Surprisingly, there is hardly any correlation
visible. When exploring the plot, we find that for embedding 2, our
expectations are largely met. In addition to the male terms in the
lower left corner close to uncle in both embeddings, female terms
are found further to the right for embedding 2. For embedding 3,
however, we find a cluster of outliers on top of the plot, where we
would expect female terms.

(© 2018 The Author(s)
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These findings illustrate that the stochastic nature of training
embeddings can result in unexpected and unwanted local results.
While we should be careful to generalize these local issues and
draw conclusions about the overall quality of the embedding, un-
covering and analyzing problematic local properties can help to
better choose between and debug multiple embeddings for a spe-
cific application scenario.

7. Discussion

In this paper, we derived a comprehensive task space for the visual
analysis of word vector embeddings. In addition, we provided and
discussed multiple interactive visual designs that cover large parts
of this space. While we rely heavily on domain literature for this
process, we have also discussed our designs with experts from the
DH and NLP communities. This happened at various design and
implementation stages to validate our design rationales, and get
feedback on the effectiveness and usability of the designs. While
these sessions were conducted in an informal setting, we still re-
port some key insights as a basis for discussion.

We held sessions with three experts, two of which are active liter-
ary researchers with an interest in but no prior experience with word
embeddings. One of the literary scholars had prior experience with
programming and computer science. The third expert is an active
NLP researcher working on embedding algorithms. While earlier
demo and feedback sessions were based on screen shots and static
images of the designs, later ones included fully functional proto-
types that could be used and tested by the experts. During each of
the different stages, we used the feedback and inspiration we re-
ceived from the experts to refine the designs and implementations.
This includes improving usability of the prototypes as well as in-
creasing their effectiveness for various analysis scenarios. Each of
the sessions included an introduction to the visualizations, and de-
mos of the use cases we derived from the literature. We then asked
the experts about the usability of the implementations, and if and
how they would use the designs in context of their work. These
questions were the starting point of an open ended discussion about
the designs, and the problems from their domains that the experts
were interested in.

All of the experts provided positive feedback on each of the vi-
sualizations during the sessions. Their interest in them, however,
differed depending on their background. Both groups were inter-
ested in neighborhood comparison, the literary experts had an addi-
tional interest in concept axes. The NLP researcher’s focus, instead,
found the reconstructed co-occurrences important, and mentioned
that they are useful for debugging and comparing multiple embed-
dings. While this shows that the tasks covered by our designs are
overall relevant to domain experts, this result is also little surprising
given the literature of different communities the respective tasks are
motivated by (see supplemental material for more information). In-
specting and comparing neighborhoods is a popular task in both do-
mains, while the motivation for analyzing co-occurrences is largely
based on NLP literature. On the other hand, mapping word vectors
to concept axes is strongly motivated from the DH community.

The experts found each of the designs easy to understand and
interpret after a brief introduction. While this was also true for
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the neighborhood comparison visualization, one of them remarked
that, although he generally liked it, understanding the visual encod-
ing might be too complicated for non-technically inclined persons.
As we target users that use word embeddings in their work, we can
presuppose some technical expertise. However, this underlines the
importance of straightforward visual representations to increase ef-
fectiveness.

While using the implementations and engaging in discussions,
the experts were able to explore questions that they were interested
in. These included analyzing the historical metaphorical use of an-
imal terms for such concepts as female, male, or devil or the ex-
ploration of cultural overtones in food terms. Most of the examples
described in the previous section, where synthesized or influenced
by these examples and discussions, including both use cases.

While we cover the majority of the task space with the designs,
we lack tools that provide a more global view that will help identify
the appropriate words, synonym groups, and analogies to explore
in detail with the methods presented here. Potentially interesting
structures, for example, include densely clustered words within the
embedding, or salient vector offsets that are likely to convey mean-
ing. In addition, the problem of visually comparing those structures
between embeddings is another open and important challenge. For
both challenges, labeled resources that are used to evaluate embed-
dings can play an important role in guiding users towards interest-
ing areas in the embedding. This is an open research problem and
an important direction for future work.

Another future direction is the extension of our tasks and tech-
niques beyond the scope of word embeddings. While targeting em-
beddings of other textual entities, such as phrases or sentences is
an interesting goal, there are many types of data beyond text for
which embedding techniques are used. Examples include images,
videos, or graphs. Embeddings of those types of data are ubiqui-
tous in machine learning and data analysis scenarios, and effective
visual methods to analyze and compare them will help improve
relevant domain tasks. While we expect most of our practical em-
bedding tasks and some of our methods to be transferable to these
domains, they provide new domain and data-specific tasks and vi-
sualization challenges.
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