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Fig. 1: We present a method that enables a robot to track provided end-effector trajectories while performing minimal reconfigurations. In this figure, the
robot tracks a welding trajectory (red line in A) with a single reconfiguration. (B) The robot is unable to proceed due to self-collision avoidance. (C) The
robot performs a reconfiguration, where the robot deviates from the task trajectory and moves to a configuration that is far away from self-collision. (D)
The robot resumes task execution from the new joint configuration and (E) finishes the task.

Abstract— Many applications require a robot to accurately
track reference end-effector trajectories. Certain trajectories
may not be tracked as single, continuous paths due to the
robot’s kinematic constraints or obstacles elsewhere in the
environment. In this situation, it becomes necessary to divide the
trajectory into shorter segments. Each such division introduces
a reconfiguration, in which the robot deviates from the reference
trajectory, repositions itself in configuration space, and then
resumes task execution. The occurrence of reconfigurations
should be minimized because they increase time and energy
usage. In this paper, we present IKLink, a method for finding
joint motions to track reference end-effector trajectories while
executing the minimum number of reconfigurations. Our graph-
based method generates a diverse set of Inverse Kinematics
(IK) solutions for every waypoint on the reference trajectory
and utilizes a dynamic programming algorithm to find the
optimal motion by linking the IK solutions. We demonstrate
the effectiveness of IKLink through a simulation experiment
and an illustrative demonstration using a physical robot.

I. INTRODUCTION

In applications such as welding, painting, sweeping, or
visual tracking, a robot needs to accurately track a reference
trajectory with the end-effector. The problem of finding a
joint space motion that drives the end-effector to accurately
match a Cartesian space trajectory is called end-effector
trajectory tracking. While both optimization-based [1], [2]
and graph-based [3] methods have been presented to solve
the problem, most previous approaches operate under the
assumption that the end-effector trajectory can be tracked as
a single and continuous path, without the need to segment
the trajectory into shorter parts. The uninterrupted tracking
of some trajectories can be infeasible due to robot kinematics
constraints such as self-collision, joint limits, and singulari-
ties. Furthermore, the assumption is overly strict for some
applications, such as welding or inspection, which allow
a robot to pause the task execution and resume the same
Cartesian pose from another joint configuration. This action,
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which is referred to as a reconfiguration [4], repositions the
robot in its joint space (see Fig. 1 for an example). In order
to sequentially visit every point on trajectories of varying
complexity, a robot must leverage its ability to undertake
reconfigurations. However, reconfigurations increase energy
usage and time to complete a trajectory, so minimizing their
occurrence is of great importance.

In this paper, we introduce a graph-based method that
enables a robot to track end-effector trajectories while per-
forming the fewest reconfigurations. The method, called
IKLink, first generates a diverse set of inverse kinematics (IK)
solutions for every waypoint on the reference end-effector
trajectory. Subsequently, a dynamic programming algorithm
is utilized to find the optimal joint trajectory by linking the
IK solutions. We provide an open-source implementation of
our proposed method1.

The central contribution of this paper is IKLink (§III-C,
§IV). In addition, we describe two efficient but sub-optimal
approaches (§III-B) as baselines. These three approaches are
thoroughly evaluated in a simulation experiment (§V) that
involves 4 robots and 70 randomly generated end-effector
trajectories. Our results show that IKLink generates accurate
and smooth motions with fewer reconfigurations when com-
pared to alternative approaches. Finally, we conclude this
paper with a discussion of the limitations and implications
of this work (§VI).

II. RELATED WORK

In this section, we describe related works in the areas of
end-effector trajectory tracking and reconfigurations.

A. End-Effector Trajectory Tracking

The problem of finding a joint space trajectory that
drives the end-effector to accurately match a Cartesian space
trajectory is known as path-wise inverse kinematics [3],
task-space non-revisiting tracking [4], or task-constrained
motion planning [5]. Various methods have been proposed
in the literature to address the problem, including greedy
1IKLink is open-sourced: https://github.com/uwgraphics/IKLink
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methods (local optimization), global trajectory optimization,
and graph-based approaches.

The end-effector trajectory tracking problem is conven-
tionally addressed using an Inverse Kinematics (IK) solver
that iteratively finds locally optimal solutions. These greedy
approaches can achieve local objectives such as joint ve-
locities minimization (e.g., via Moore-Penrose pseudoin-
verse of the Jacobian matrix [6]) or singularity and self-
collision avoidance (via non-linear optimization approaches
[7]). While being computationally efficient, these approaches
can be myopic and get stuck in local minima [8], [9], [10].

The end-effector trajectory tracking problem can be cast as
a trajectory optimization problem which directly optimizes a
trajectory in joint space while satisfying constraints. Holla-
day et al. [2] utilize a trajectory optimization method, Tra-
jOpt [11], to minimize the Fréchet distances between current
solutions and a given reference trajectory. In order to improve
precision, TORM [1] minimizes the summed Euclidean
distance between every pair of waypoints on the current
and the reference trajectories. These trajectory optimization
methods are sensitive to initial trajectory [8] and prone to
be stuck in local minima [2]. In addition, these approaches
are designed to generate a single, continuous solution, e.g.,
TORM [1] has a smoothness objective and TrajOpt [11]
has a displacement minimization objective to ensure joint
space continuity. Therefore, trajectory optimization methods
are designed to track a trajectory without interruptions and
fail when tracking a long or complex end-effector trajectory
that requires reconfigurations.

Alternatively, graph-based approaches construct a hierar-
chical graph where each layer consists of a set of IK solutions
for each waypoint on the end-effector trajectory. These
methods can be classified into two groups according to the
type of graph utilized. The first group of methods connects
an IK solution to multiple IK solutions in the previous layer
that satisfy the velocity constraints, resulting in a Directed
Acyclic Graph (DAG). Prior works employ various shortest
path algorithms to find the optimal joint trajectory in the
DAG, including value iteration dynamic programming [3],
Dijkstra’s algorithm [9], [12], [13], and Lifelong Planning
A* [14]. The second group of approaches builds trees by
connecting an IK solution to the nearest IK solution in the
previous layer [5], [10], [15]. A joint trajectory is obtained
by traversing from a leaf to the root. Graph-based methods
are generally computationally expensive [9], [16] and various
clustering methods have been used to reduce the number of
vertices in the graph [3], [16]. In contrast to the above work
that tracks a given end-effector trajectory uninterruptedly,
this paper presents a graph-based approach that constructs
trees and uses dynamic programming to track an end-effector
trajectory while performing minimal reconfigurations.

B. Reconfigurations

The aforementioned end-effector trajectory tracking meth-
ods assume that the given end-effector trajectory can be
tracked as a single, continuous path. This assumption is
invalid in cases where a continuous motion does not exist

in the joint space to track the given end-effector trajectory.
Additionally, the assumption is overly restrictive on tasks
that allow reconfigurations. Prior works propose methods to
generate robot motions that include minimal reconfigurations
in end-effector trajectory tracking [4] and area coverage [17],
[18]. However, these methods are designed for non-redundant
robots and it is unclear how to apply them to redundant
robots. The method proposed in this paper is applicable to
both non-redundant and redundant robots.

III. TECHNICAL OVERVIEW

In this section, we formalize our problem statement,
describe two baseline approaches, and provide an overview
of our proposed method.

A. Problem Formulation

Consider an k degree of freedom robot whose joint con-
figuration and end-effector pose are denoted by q ∈ Rk

and p ∈ SE(3), respectively. The goal of this work is to
compute a joint space trajectory ξ : [0, Tχ] → Rk that
drives the robot to match a desired end-effector trajectory
χ : [0, Tχ] → SE(3) and has a minimum number of
joint-space discontinuities. A joint space discontinuity occurs
between time t and t + τ if there exists one joint j whose
velocity [ξ(t + τ)j − ξ(t)j ]/τ has exceeded its velocity
limit, where τ > 0 is a short time interval. In practice, the
target end-effector trajectory χ is generally represented in
a discrete form {(t0,p0), (t1,p1), ..., (tn−1,pn−1)}, where
pi is the end-effector pose at timestamp ti. We assume that
the sampling is dense enough that the n waypoints can ac-
curately approximate the end-effector trajectory. In addition,
we assume that the robot’s task permits reconfiguration and
we can find motions to execute reconfigurations.

B. Baseline Approaches

In order to facilitate understanding of the problem, we
describe two baseline approaches. These two approaches
serve as baselines in our experiment in §V. Fig. 2 provides
an illustration of the two baseline approaches as well as the
method proposed in this paper.

GreedyIK — Perhaps the most straightforward solution
is to use an Inverse Kinematics (IK) solver to keep the
robot on the reference end-effector trajectory, optimizing for
the closest solution from the previous state. In the event
that the IK solver is unable to proceed due to kinematic
constraints, the robot reconfigures by reinitializing the IK
solver from a randomly sampled configuration. While being
simple and computationally efficient, GreedyIK has three
primary drawbacks: 1) it is myopic because it only finds
locally optimal solutions; 2) due to the nonlinearity of an IK
problem, the IK solver may fail to find a valid IK solution;
3) the strategy of undergoing reconfiguration to a random
IK solution is clearly not optimal. In practice, GreedyIK
generally performs reconfigurations more frequently than
necessary.

MultiGIK — This approach involves the instantiation of
multiple greedy IK solvers in parallel and keeps the longest
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Fig. 2: An illustration of the three approaches described in this paper and evaluated in our experiment.

solution, i.e., the solution that can track the given end-
effector trajectory for the maximum duration. This proce-
dure is repeated starting from the subsequent waypoint of
the longest solution. MultiGIK has good, but not optimal,
performance. Yang et al. [4] have proven that choosing
longest possible motion segments leads to a solution with the
minimum number of reconfigurations. However, the nested
greedy IK solver in MultiGIK is myopic and not guaranteed
to find the longest possible motion, so MultiGIK is not
optimal. MultiGIK finds optimal solutions only when its
greedy motion coincides with the longest possible motion.
In practice, MultiGIK works well, so we use it as a baseline
in our experiment in §V. Our results show that IKLink con-
sistently finds motions with equal or fewer reconfigurations
than MultiGIK.

C. Overview of IKLink

Our algorithm consists of two stages. First, it generates a
number of inverse kinematics solution candidates for each
waypoint on the target end-effector trajectory. The output
of this stage is an n × m IK solution table S, where n
is the number of waypoints on the reference end-effector
trajectory and m is the number of IK candidates for each
waypoint. Afterward, a dynamic programming algorithm is
utilized to establish connections between solution candidates
and compute the solution with minimal reconfigurations.
We name the method IKLink because it generates joint
trajectories by linking IK solutions. The efficacy of the
dynamic programming algorithm depends upon the diversity
of the IK solutions. We will describe our sampling strategy
and the dynamic programming algorithm in the next section.

IV. TECHNICAL DETAILS

In §III-C, we gave an abstract overview of IKLink. We
elaborate on the details of our method in this section.

A. IK Solution Construction

IKLink generates robot motions by linking Inverse Kine-
matics (IK) solutions, so the quality of the IK solutions
directly impacts the algorithm’s performance. Our goal is
to sample a diverse set of IK solutions because similar
IK solutions can result in unnecessary computation and
hinder performance of the dynamic programming algorithm.

Inspired by Stampede [3], we use three methods to construct
solution candidates: random sampling, greedy propagation
using an optimization-based IK solver, and clustering.

Random Sampling – The IK solutions of the first waypoint
on the target end-effector trajectory are randomly sampled.
We generate the samples using Trac-IK [19] by uniformly
sampling the seeds from the robot’s joint space.

Greedy Propagation – To facilitate smooth motions, we
utilize greedy propagation instead of random sampling
to generate solution candidates for the subsequent way-
points on the trajectory. Greedy propagation uses a greedy,
optimization-based IK solver to find the closest IK solution
from a preceding solution candidate. We choose RelaxedIK
[20] as the greedy IK solver for its ability to generate
smooth motions. RelaxedIK achieves higher accuracy the
more iterations it is allowed. In our prototype, to balance
accuracy and computing time, we consider an IK solution to
be legitimate if the positional and rotational error of the end-
effector are smaller than 1 mm and 0.01 rad, respectively.

However, the solution candidates created by greedy prop-
agation have a tendency to converge over the course of
the trajectory. To illustrate this, we command a Rethink
Robotics Sawyer robot to track a straight line, starting from
20 different joint configurations. This results in 20 different
motions using greedy propagation. Fig. 3 visualizes these
motions using the Uniform Manifold Approximation and
Projection (UMAP) method [21] for dimensionality reduc-
tion. The observation implies that the IK solutions generated
by greedy propagation have a tendency to converge, hence
not consistently yielding a diverse set of solutions.

Clustering – To avoid repeated candidates and maintain so-
lution diversity, we merge similar IK solutions before greed-
ily propagating to the IK solutions for the next waypoint.
We utilize Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [22] to merge IK solutions that are
closer than 0.05 rad in joint space. Following the merging
process, the newly freed spots in the IK solution table are
filled by randomly sampled solutions.

B. Dynamic Programming

In the preceding subsection, we described the procedure
of constructing IK solutions for each waypoint along the
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Fig. 3: Left: A UMAP visualization of 20 robot motions that track an identical end-effector trajectory. Each motion starts with a random configuration
and greedily propagates to the subsequent end-effector pose using an optimization-based IK solver. Convergence of motions occurs in regions 1 and 2.
Right: We visualize motions A and E using a solid color robot and a translucent robot, respectively. The two motions start from different configurations
but converge together over the course of the trajectory. This figure shows that greedy propagation does not consistently yield diverse solutions.

target end-effector trajectory. Below, we present a dynamic
programming approach to establish connections between IK
solutions, ultimately resulting in a motion.

The dynamic programming method takes the IK solution
table S as input. For each cell in the table, we use c[x, y]
to denote the minimum number of reconfigurations needed
to travel from the first column of the table (the start of the
reference end-effector trajectory) to the current IK solution
S[x, y]. The predecessor of S[x, y] is stored in p[x, y] and
the length in joint space from the first column to S[x, y] is
stored in l[x, y]. As described in Algorithm 1, the dynamic
programming method proceeds by computing c, p, and l from
the first column of the table. After traversing through all the
columns, the optimal joint trajectory can be traced backward
using the stored predecessors p.

The efficacy of the dynamic programming algorithm stems
from the fact that the problem can be broken down into sub-
problems of finding an optimal solution that ends with a
specific joint configuration for a sub-trajectory χ[0:T ], where
T < Tχ. Let us assume ξ∗ is an optimal solution for
the entire end-effector trajectory χ, then ξ∗[0:T ] must be an
optimal solution for χ[0,T ] among all solutions ended with
ξ∗(T ). If there exists a solution superior to ξ∗[0:T ] and it also
ends with ξ∗(T ), a superior global solution can be obtained
by substituting the new solution in ξ∗ for ξ∗[0:T ]. This derives
a contradiction from the assumption that ξ∗ is optimal.

The objective of the dynamic programming algorithm is
to link IK solutions. Its superiority becomes evident when
greedy propagation becomes myopic or fails to find a valid
IK solution. Fig. 2 provides an example for each situation:
during node construction, Node A myopically propagates to
the next node in the same row; later, the dynamic program-
ming algorithm links it to a node in the next row that leads
to fewer reconfigurations. In another example, during node
construction, greedy propagation fails to find a successive
IK solution for Node B; later, the dynamic programming
algorithm finds a randomly sampled node as a successor
node, which avoids the need to do a reconfiguration.

Algorithm 1: Dynamic Programming
input : an n×m table S that contains IK solutions

an n array t that contains timestamps
output: a joint space trajectory that has the

minimum number of discontinuities
1 c[0..n, 0..m] = 0 ▷ num of reconfig

2 p[0..n, 0..m] = 0 ▷ predecessor

3 l[0..n, 0..m] = 0 ▷ length in joint space

4 for x = 1 to n−1 do ▷ start linking IK solutions

5 ∆t← t[x]−t[x−1]
6 for y1 = 0 to m−1 do
7 c[x, y1], l[x, y1]←∞,∞
8 for y2 = 0 to m−1 do
9 if c[x−1, y2]+1<c[x, y1] or (c[x−1, y2]+1

==c[x, y1] and l[x−1, y2]<l[x, y1]) then
▷ link w/ reconfiguration

10 c[x, y1]← c[x−1, y2]+1
11 p[x, y1], l[x, y1]← y2, l[x−1, y2]
12 if CHECK_CONT(S[x−1, y2], S[x, y1], ∆t)

then ▷ link w/o reconfiguration

13 d← l[x−1, y2]+∥S[x−1, y2]− S[x, y1]∥2
14 if c[x−1, y2]<c[x, y1] or (c[x−1, y2]==

c[x, y1] and d<l[x, y1]) then
15 c[x, y1]← c[x−1, y2]
16 p[x, y1], l[x, y1]← y2, d

17 cmin, lmin, ymin ←∞,∞,∞
18 for y = 0 to m−1 do ▷ find index of optimal motion

19 if c[n−1, y]<cmin or (c[n−1, y]==cmin and
l[n−1, y]<lmin) then

20 cmin, lmin, ymin ← c[n−1, y], l[n−1, y], y
21 traj ← [ ] ▷ optimal motion

22 for x = n−1 to 0 do
23 Append (t[x], S[x, ymin]) to traj
24 ymin ← p[x, ymin]
25 return Reverse(traj)

Function CHECK_CONT returns true if the robot can move between the
two given joint configurations within the time duration, without exceeding
joint velocity limits.



V. EVALUATION

In this section, we compare our method, IKLink, with
two alternative approaches described in §III-B, GreedyIK
and MutliGIK, on four benchmark tasks. In our prototype
systems, MutliGIK instantiates 300 IK solvers in parallel
and IKLink samples 300 IK solutions for each waypoint on
the reference trajectory (m = 300). To more fairly assess
IKLink over the greedy methods, we provide an additional
baseline that takes a similar amount of time to IKLink.
The MultiGIK×30 baseline uses the MultiGIK method but
instantiates 300×30 IK solvers in parallel (rather than 300).

A. Implementation Details

Our prototype implementation is based on the open-
source RangedIK2 library. RangedIK [23] is an extension
of RelaxedIK [20] which can effectively exploit tolerances
in joint or Cartesian space. We use RangedIK without tol-
erances being specified, making it functionally equivalent to
RelaxedIK. To ensure fair comparisons, all three approaches
used the same function for IK solution sampling and greedy
propagation. All evaluations were conducted on a laptop with
Intel Core i7-11800H 2.30 GHz CPU and 16 GB of RAM.

B. Benchmark

We developed four benchmark applications to compare our
method against alternative approaches.

1) Random Trajectory Tracking: The robot tracks an end-
effector trajectory that consists of two consecutive cubic
Bézier curves in SE(3), whose control points are randomly
sampled within a robot’s workspace. We use the cumulative
Bézier quaternion curve [24] to generate a smooth, time-
continuous curve in rotation space. The end-effector trajec-
tory is discretized to 300 waypoints per meter. To ensure
that every waypoint on the trajectory is reachable, we use
Trac-IK [19] for reachability check.

2) Welding: The robot welds a vertical cylinder on a
horizontal plane. The radius of the cylinder is uniformly
sampled from 0.1m to 0.2m and its position is randomly
sampled in the workspace in front of the robot.

3) Screw Tightening: The robot uses a screwdriver to
rotate a vertically oriented screw in a clockwise direction.
The length of the screw is uniformly sampled from 0.02m
to 0.04m and the number of turns to tighten the screw is
uniformly sampled from 5 to 10.

4) Valve Closing: The robot rotates a valve clockwise.
The radius of the handle is 0.15m and the number of turns
is uniformly sampled from 3 to 5.

C. Experimental Procedure

We repeat the random trajectory tracking benchmark 10
times on three 7-DoF redundant robots (Rethink Robotics
Sawyer, Franka Panda, and KUKA LBR iiwa) and a 6-DoF
non-redundant robot (Universal Robot UR5). The welding,
screw, and valve benchmarks are repeated 10 times on a
Sawyer robot. A total of 70 end-effector trajectories are
generated and their waypoint counts, lengths, and angular
2IK solver: https://github.com/uwgraphics/relaxed_ik_core/tree/ranged-ik

displacements are reported in Table I. We use various ap-
proaches to track these trajectories and measure the generated
motions. In addition to the number of configurations, we
report mean computation time and evaluate motion qualities
using mean joint velocity (rad/s), maximum position error
(m), and maximum rotation error (rad).

D. Results

As shown in Fig. 5, among all 70 benchmark end-
effector trajectories, solutions found by IKLink consistently
require equal or fewer reconfigurations than those found
by GreedyIK and MultiGIK. The results demonstrate the
efficacy of IKLink at generating motions with minimal re-
configurations. Table I also shows that IKLink’s performance
is equal or superior to MultiGIK×30, despite the latter uti-
lizing a larger time budget. In addition, all these approaches
generate accurate and smooth motions. While speed may not
be the most important criterion for offline algorithms, IKLink
is slower than GreedyIK and MultiGIK. Our implementation
has not been optimized for execution speed.

E. Real-Robot Demonstration

To further demonstrate the effectiveness of IKLink, we
generate a welding motion using IKLink and execute it on a
physical Rethink Robotics Sawyer robot. The robot is able
to accurately and smoothly track the welding trajectory with
one reconfiguration. We use RRT∗ [25] to plan the motion
for the reconfiguration. The demonstration is shown in Fig.
1 and the supplementary video.

VI. DISCUSSION

In this paper, we present a graph-based method for finding
joint motions to track reference end-effector trajectories
while undertaking minimal reconfigurations. Below, we dis-
cuss the limitations and implications of this work.

A. Limitations

Our work has several limitations that highlight potential
future directions. First, the goal of this paper is to find
a motion with the minimum number of reconfigurations.
One underlying assumption is that all reconfigurations are
equally detrimental, which may not always hold true. The
costs to perform reconfigurations may vary depending on
the time and energy usage. When the robot is in a cluttered
environment, certain reconfigurations may even be infeasible
to perform. Therefore, future work should explore methods
that integrate the planning of both trajectory tracking motions
and reconfiguration motions. Second, the motion qualities of
IKLink build upon the diversity of Inverse Kinematics (IK)
samplers and IKLink’s time complexity is O(m2n), where
m is the number of IK samplers per waypoint. Hence, both
IKLink’s motion qualities and performance can be improved
by using a diverse and efficient IK sampling method, e.g., IK-
Flow [26]. Third, our method involves sampling IK solutions
within a robot’s joint limits and can not sample solutions
for revolute joints without position limits. Future work can
extend our work to exploit joints with unlimited range.



�������������������������� ��
���� ��
���

�	��� ����������������

Fig. 4: Our experiment involves four benchmark applications. In Random Trajectory Tracking, the reference end-effector trajectories are visualized in
green curves, with coordinate frames attached to show orientations. In the other three benchmarks, the translucent robot and the solid-color robot show the
configurations before and after a reconfiguration. These visualizations were generated using Motion Comparator3.

TABLE I
EXPERIMENT RESULTS AND METRICS OF THE INPUT TRAJECTORIES

Benchmark Method Mean Num
of Reconfig

Mean Comput-
ation Time (s)†

Output Joint Motion Metrics Input End-Effector Trajectory Metrics
Mean Joint
Vel. (rad/s)

Max Pos.
Error (m)‡

Max Rot.
Error (rad)‡

Mean # of
Waypoints

Mean
Len. (m)

Mean
Rot. (rad)

R
an

do
m

Tr
aj

ec
to

ry
Tr

ac
ki

ng

iiw
a

GreedyIK 13.80±6.87 0.13±0.03 0.17±0.04 1e-3±6e-6 1e-2±9e-6
685.6
±128.2

2.28
±0.43

9.91
±2.50

MultiGIK 1.90±0.94 6.34±2.75 0.18±0.04 1e-3±1e-6 1e-2±5e-6
⌊MultiGIK×30 1.60±1.02 186.01±70.0 0.18±0.04 1e-3±3e-6 1e-2±1e-5
IKLink 0.40±0.80 166.55±140 0.18±0.04 1e-3±3e-5 1e-2±5e-6

Sa
w

ye
r GreedyIK 14.20±11.6 0.12±0.03 0.22±0.04 1e-3±2e-5 1e-2±1e-5

787.5
±169.6

2.62
±0.57

11.60
±2.97

MultiGIK 1.50±0.67 7.05±1.71 0.21±0.06 1e-3±1e-5 1e-2±2e-5
⌊MultiGIK×30 1.70±1.85 212.68±72.5 0.21±0.04 1e-3±6e-6 1e-2±3e-5
IKLink 1.10±0.30 119.25±33.2 0.19±0.06 1e-3±1e-5 1e-2±3e-5

Pa
nd

a

GreedyIK 16.60±8.24 0.14±0.04 0.23±0.04 1e-3±5e-6 1e-2±1e-5
669.3
±107.2

2.23
±0.36

11.95
±2.66

MultiGIK 4.40±1.50 10.81±5.11 0.23±0.03 1e-3±3e-5 1e-2±1e-5
⌊MultiGIK×30 3.70±1.55 376.52±150 0.24±0.03 1e-3±5e-5 1e-2±1e-5
IKLink 1.70±0.90 219.92±61.1 0.24±0.04 1e-3±7e-6 1e-2±3e-5

U
R

5

GreedyIK 16.00±14.1 0.11±0.03 0.26±0.03 1e-3±9e-6 1e-2±2e-5
713.0
±148.2

2.37
±0.49

11.77
±1.89

MultiGIK 2.10±1.30 6.62±3.57 0.27±0.03 1e-3±3e-5 1e-2±2e-5
⌊MultiGIK×30 1.60±1.20 162.88±61.6 0.27±0.04 1e-3±4e-5 1e-2±2e-5
IKLink 1.50±1.12 121.87±29.0 0.25±0.03 1e-3±6e-5 1e-2±8e-6

W
el

d

Sa
w

ye
r

GreedyIK 28.50±15.4 0.13±0.02 0.16±0.02 1e-3±5e-5 1e-2±3e-6
450.0
±0.0

0.86
±0.17

6.27
±0.00

MultiGIK 1.50±1.28 5.30±1.13 0.16±0.02 1e-3±3e-5 1e-2±2e-6
⌊MultiGIK×30 1.20±0.98 142.12±31.4 0.16±0.02 1e-3±2e-5 1e-2±1e-5
IKLink 0.90±0.30 88.98±11.3 0.14±0.03 9e-4±8e-5 1e-2±3e-6

V
al

ve

GreedyIK 22.60±9.17 0.16±0.04 0.35±0.02 1e-3±7e-6 1e-2±2e-6
585.0
±105.0

3.67
±0.66

24.46
±4.40

MultiGIK 2.50±0.81 7.77±1.68 0.36±0.03 1e-3±3e-5 1e-2±6e-6
⌊MultiGIK×30 2.30±0.90 227.53±57.4 0.36±0.02 1e-3±2e-5 1e-2±5e-6
IKLink 2.30±0.90 110.38±22.7 0.35±0.02 1e-3±4e-5 1e-2±7e-6

Sc
re

w

GreedyIK 22.10±11.8 0.28±0.11 0.25±0.01 1e-3±4e-5 1e-2±6e-6
1155.0
±285.0

0.03
±0.01

48.34
±11.94

MultiGIK 4.70±1.35 21.58±5.94 0.24±0.01 1e-3±3e-5 1e-2±8e-6
⌊MultiGIK×30 4.60±1.20 647.97±176 0.25±0.01 1e-3±8e-6 1e-2±1e-5
IKLink 4.60±1.20 230.59±80.3 0.26±0.01 1e-3±1e-5 1e-2±2e-5

The range values are standard deviations.
†: All methods were implemented in Python and we expect reduced computation time using a more efficient compiled language such as C++.
‡: In our prototype system, we set the positional and rotational tolerance of IK solvers to be 1e-3 m and 1e-2 rad, respectively. As discussed in
§IV-A, the accuracy can be improved by allowing more computing time for greedy propagation.
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Fig. 5: In our experiment, IKLink consistently generates motions with equal
or fewer reconfigurations compared to the alternative approaches. The x-
axis of the plot corresponds to a total of 70 end-effector trajectories. The
y-axis shows the number of reconfigurations in logarithmic scale.

3Visualization tool: https://github.com/uwgraphics/MotionComparator

B. Implications

IKLink enables a robot to track end-effector trajectories of
any complexity while performing minimal reconfigurations.
IKLink eliminates the need to manually segment a long or
complex trajectory and is beneficial in real-life scenarios
that involve end-effector trajectory tracking, such as welding,
sweeping, scanning, painting, and inspection.
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